Оборудование и технологии переработки молока. Машины и оборудование для первичной обработки молока. Типы и общая оценка очистки молока Основная механическая обработка

Наиболее распространенный способ очистки молока на фермах - фильтрование. Имеется большое количество разновидностей фильтров, в качестве рабочих элементов которых применяют ват­ные диски, марлю, фланель, бумагу, металлическую сетку синте­тические материалы и др.

Ватные диски с гладкой или «вафельной» поверхностью хорошо очищают молоко и не требуют специального ухода. Использован­ные ватные диски заменяют новыми.

Медленная фильтрация молока через такие фильтры требует увеличения емкости фильтровальной камеры.

Марлевые фильтры обычно используются на фермах. Однако такие фильтры быстро изнашиваются, загрязняются и не обеспе­чивают высокой степени чистоты молока.

Все большее применение на фермах находят фильтры из бумаги и синтетических тканей (энанта, лавсана и др). При правильном использовании 1 м фильтровальной ткани из лавсана заменяет 40 м марли. Одноразовые бумажные фильтры по сравнению с фильтрами многоразового использования позволяют получать мо­локо с меньшей механической загрязненностью.

Цедилки применяют для фильтрации молока, поступающего порциями. Они позволяют сгладить поток фильтруемого молока


1 - корпус; 2 - распорное кольцо; 3 - грязевой же­лоб; 4, 6 - решетки; 5 - фильтрующий элемент


Рис. 18.7. Цилиндрический фильтр:

1 - кольцо; 2 - фильтрующий элемент; 3 - корпус; 4,6 - уплотнительные про­кладки; 5 - каркас; 7 - переходник; 8 - гайка

стенкам решетки в желобок, откуда удаляются при про­мывке или замене фильтра. Цилиндрический фильтр применяют для фильтрации молока в потоке на доильных установках. Такой фильтр представляет собой цилиндрический элемент, выполненный из нержавеющей стали. Внутри корпуса 3 (рис. 18.7) фильтра имеется каркас 5, на кото­рый надевается фильтрующий элемент 2, закрепляемый резино­вым кольцом 1. Уплотнение фильтра в корпусе достигается рези­новыми прокладками.

Работает фильтр следующим образом. Молоко, текущее по мо-локопроводу, попадает в корпус фильтра, просачивается через фильтрующий материал, на котором оседают механические части­цы, и поступает в охладитель. Перед циркуляционной промывкой фильтрующий элемент удаляют из корпуса фильтра.

Для фильтрации молока в высокопроизводительных молочных линиях применяют конические и дисковые фильтры как в оди­нарном, так yi в парном исполнении производительностью

50б.7.20Ьо6дм 3 /ч.

Конический фильтр состоит из корпуса 3 (рис. 18.8), который снабжен подводящим 8 и отводя­щим 7 патрубками, а также крыш­кой 2 с вентилем 1 для выпуска воздуха. Внутри корпуса помеще­на молокоприемная чаша 4 с фильтрующим элементом 5, в ка­честве рабочего элемента которого используют лавсан. Для отсоеди­нения фильтра во время его про­мывки и чистки на отводном пат­рубке установлен кран 6.

Герметизация прилегания

крышки достигается резиновым шнуром прямоугольного сечения, уложенным в паз крышки. К кор-

Рис. 18.8. Конический фильтр:

1 - вентиль; 2 - крышка; 3 - корпус; 4 - моло­коприемная чаша; 5 - фильтрующий элемент; 6 - спускной кран; 7, 8 - патрубки


пусу крышка крепится при помощи специальных колпачковых гаек.

Молоко через патрубок 8 поступает в корпус фильтра, просачи­вается через фильтрующий элемент 5 и выходит из фильтра через кран в патрубок 7. По мере накопления осадка на фильтрующей ткани пропускная способность фильтра уменьшается.

Длительность безразборной работы конических фильтров в за­висимости от загрязненности молока составляет З...4ч. После за­сорения фильтрующего элемента работу фильтра прекращают и сменяют фильтрующую ткань. Для непрерывного процесса в мо­лочной линии устанавливают два попеременно работающих филь­тра, расположенных параллельно и соединенных трехходовым краном.

Дисковые фильтры отличаются от конических и других испол­нений развитой фильтрующей поверхностью, которая может регу­лироваться набором дисков 2 (рис. 18.9), покрытых фильтрующи­ми элементами 1 и закрепленных стопорами 3.

Длительность безразборной работы фильтров такой конструк­ции несколько ниже, чем конических, и для одинарного исполне­ния равна 2...3 ч.

Для очистки молока в поточной производственной линии наи­более удобен центробежный очиститель, который в отличие от фильтров не нуждается в смен­ных фильтрующих материалах.

Центробежный очиститель состоит из следующих основных узлов: барабана 7 (рис. 18.10), приводного механизма 2, при-емно-выводного устройства, электродвигателя и станины 1.

В чаше Останины приводно­го механизма укреплены два -*■ тормоза Зддя быстрой останов­ки барабана после выключения электродвигателя, а также два стопора 9, удерживающие бара­бан от произвольного враще­ния при разборке и сборке. Ос­нование барабана закрепляется на веретене приводного меха­низма с помощью фигурной гайки 5.

Рис. 18.9. Дисковый фильтр:

/ - фильтрующий элемент; 2 - диск; 3 - стопор

Рис. 18.10. Центробежный очисти­тель:

I - станина; 2 - приводной механизм;
} - тормоз; 4- чаша станины; 5- гайка
крепления барабана; 6 - патрубок выво­
да молока; 7- барабан; 8 - прижим; 9-
стопор; 10 - пробка для залива масла;

II - пульсатор; 12 - указатель уровня

масла; 13 - пробка слива масла

Приемно-выводное уст­ройство крепится к кожуху гайкой, а кожух к чаше ста­нины - прижимами 8. При­водной механизм размещен в станине, масляная ванна которой имеет отверстия для залива масла и его выпуска, закрываемые соответственно пробками 10 и 13. Уровень масла контролируется указа­телем 12, а число оборотов барабана - пульсатором //. Основной рабочий орган центробежного очистителя - барабан. На его основании 8 (рис. 18.11) в специальной проточке устанавливается тарелкодер-жатель 1, положение которого фиксируется штифтом 9.

Наружная поверхность тарелкодержателя имеет три шлица, на которые укладывается пакет промежуточных конических тарелок 2. Для удобства сборки все тарелки в барабане пронумерованы. На пакет промежуточных тарелок укладывается разделительная та­релка 3. Сверху барабан закрывается крышкой 4, которая вместе с тарелкой 3 образует напорную камеру.

Герметичность барабана между его основанием 8 и крышкой 4

обеспечивается уплотнитель-
ным кольцом 6. Положение
крышки относительно основа­
ния фиксируется шпонкой 7.
2 Для соединения крышки с осно-

с? 4 ванием служит гайка 5, имею-

Рис. 18.11. Барабан очистителя:

1 - тарелкодержатель; 2 - пакет тарелок;

3 - разделительная тарелка; 4 - крышка;

5 - гайка; 6 - уплотнительное кольцо; 7 -


шпонка; 8 - основание; 9- штифт


Рис. 18.12. Технологическая схема центробеж­ной очистки:

1 - напорный диск; 2 - тарелки; 3 - грязевая ка­мера

щая левую трапецеидальную резьбу, что устраняет возможность самоот­винчивания гайки во время работы.

Приводной механизм состоит из горизонтального вала, связанного с вертикальным валом-веретеном вин­товой парой. Вращение горизонталь­ному валу от электродвигателя пере­дается через фрикционную муфту, которая обеспечивает постепенный разгон барабана до рабочей скорости.

Технологическая схема очистки представлена на рис. 18.12. Молоко

через дроссель, установленный на выходе из насоса с заданной производительностью, поступает в центральную трубку барабана, а затем в нижнюю часть тарелкодержателя и выводится к перифе­рии барабана. Под действием напора молоко проходит по зазорам между тарелками от периферии к центру.

Центробежными силами, развиваемыми в барабане, тяжелые частицы (механические примеси) отбрасываются к стенкам бара­бана, образуя на них плотный осадок, который удаляют из бараба­на после остановки.

Очищенное молоко вытесняется к центру барабана и попадает в напорную камеру, где захватывается неподвижным диском от­водного устройства и подается на дальнейшую обработку (пасте­ризацию, охлаждение).

Практическое занятие № 2

Оборудование для механической обработки молока и молочных продуктов

2.1. Оборудование для разделения и концентрирования молока мембранными методами

К мембранным методам обработки молока относят ультрафильтрацию, обратный осмос и электродиализ.

Сущность всех мембранных методов - это разделение и концентрирование молочного сырья в процессе фильтрации через специальные мембраны под действием давления (ультрафильтрация и обратный осмос) или электрического поля (электродиализ).

Ультрафильтрацию используют для выделения белков из молока и молочной сыворотки; при обратном осмосе происходит концентрирование молочного сырья, так как через мембраны проходит только вода; электродиализу подвергают молочную сыворотку с целью ее деминерализации.

Исполнительный орган установок для фильтрации и обратного осмоса - полупроницаемая мембрана на основе ацетата целлюлозы и пористых полимерных материалов. Для ультрафильтрации применяют мембраны с размерами пор 500нм. Такие мембраны задерживают молекулы с размерами большими, чем размеры пор, и пропускают мелкие молекулы. Процесс ультрафильтрации проводят под давлением 0,1...0,5 МПа. Для обратного осмоса используют полупроницаемые мембраны с размерами пор менее 50 нм, процесс ведут при давлении 1...10 МПа.

Мембранный аппарат - это устройство, состоящее из корпуса, мембраны, дренажного узла, крепежных деталей, конструктивных элементов для ввода исходного раствора и выхода концентрата и фильтрата, перемешивания и др. Для мембранного разделения применяют четыре типа аппаратов: плоскорамные, трубчатые, рулонные и с полыми волокнами. На рис. 2.1 показаны основные типы мембранных аппаратов.


Промышленные мембранные аппараты представляют собой пакеты, блоки, комплексы мембранных элементов: ячеек, секций, модулей. Мембранный аппарат обычно является частью мембранной установки периодического или непрерывного действия, в которую входят также насосы, дозирующие устройства, емкости для исходного раствора, фильтрата, концентрата и моющих растворов, соединительные трубопроводы и контрольно-измерительные приборы.

Ультрафильтрационная установка состоит из фильтрующего аппарата, насоса для подачи в аппарат продукта, насоса для проталкивания продукта через мембранные фильтры, соединительных трубопроводов и регулирующих вентилей.

Главной частью фильтрующего аппарата является полупроницаемая мембрана - тонкая пористая пленка, размеры пор которой менее 0,5 мкм. Пленка помещается на макропористую подложку, усиливающую ее механическую прочность. Обычно в качестве подложки применяется пористая нержавеющая листовая сталь толщиной 0,5...3 мм с порами 0,5...10 мкм.

Рис 2.1. Мембранные аппараты:

а - плоскорамный: 1- фланец, 2- мембрана, 3- дренажная пластина, 4- уплотнительная пластина, 5- разделительная пластина; б - трубчатый: 1- герметизирующий материал (компаунд), 2- корпус, 3- трубчатая мембрана; в - рулонный: 1- трубка для отвода фильтрата, 2- мембрана, 3- каналообразующий элемент (турбулизатор), 4- подложка – дренаж, 5- клеевое соединение; г - с полными волокнами: 1- подложка-дренаж, 2- шайба с полым волокном, 3- корпус, 4- полое волокно, 5- крышка.

На первой стадии в результате ультрафильтрации получают концентрат, содержащий от 3 до 15 % белка и лактозно-солевой раствор. На второй стадии лактозно-солевой раствор пропускают через обратноосмотическую мембрану и получают концентрированный раствор лактозы (10...20 %) и фильтрат, который представляет собой 1%-ный раствор солей.

Конструкции ультрафильтрационных установок для обработки молочных и пищевых продуктов разнообразны. В наиболее совершенных, например в системе «Сартокон-2», фильтруемая жидкость проталкивается с помощью насоса через тонкие каналы между двумя фильтрами.

Часть жидкости проходит через мембранные фильтры, а остальная попадает в емкость с исходным продуктом, чтобы вновь рециркулировать через систему. Непрерывный тангенциальный поток вдоль поверхности фильтра приводит к эффективной фильтрации, так как не позволяет задержанным частицам или веществам осесть на поверхности фильтров и блокировать их. Эффект очистки усиливается благодаря использованию в узком канале между фильтрами специальной сетки, вызывающей турбулентность потока.

В системе применяются модули «Микросарт» с мембранными фильтрами из ацетата целлюлозы или полиолефина с порами размерами 0,1; 0,3; 0,45 мкм или модули «Ультрасарт» с ультрафильтрами из триацетата целлюлозы или полисульфона с номинальной селективностью по молекулярной массе, 10000 и 5000.

Производительность системы «Сартокон-2» зависит от числа установленных в ней модулей, площадь поверхности которых может изменяться в пределах 0,7...4,9 м2 при ультрафильтрации и 0,7,..4,2 м2 при микрофильтрации.

2.2. Оборудование для разделения гетерогенных систем

Сущность процесса разделения (сепарирования) молока, как и любой гетерогенной системы, заключается в осаждении дисперсной фазы в поле действия гравитационных и центробежных сил.

При сепарировании молоко разделяется на две фракции различной плотности: высокожирную (сливки) и низкожирную (обезжиренное молоко).


По назначению различают сепараторы-молокоочистители, сепараторы-сливкоотделители, сепараторы для получения высокожирных сливок и универсальные со сменными барабанами.

По способу подачи молока и отвода продуктов сепарирования аппараты бывают открытые, полузакрытые и закрытые.

В открытых сепараторах производительностью до 0,3 кг/с подача молока, отвод сливок и обезжиренного молока происходят в соприкосновении с воздухом. В этом случае образуется молочная пена, ухудшающая условия эксплуатации сепараторов. В полузакрытых сепараторах производительностью 0,5... 1 кг/с молоко подается открытым способом, а отвод продуктов - закрытым под напором. В закрытых (герметических) сепараторах производительностью свыше 1 кг/с подача молока и отвод продуктов сепарирования происходят без доступа воздуха под давлением по трубам.

По способу удаления из барабана механических примесей и белкового сгустка сепараторы могут быть с ручной выгрузкой осадка (остановка сепаратора, разборка и очистка барабана), с периодической выгрузкой через окна в корпусе барабана (саморазгружающиеся) и с непрерывной выгрузкой осадка через сопла по периферии корпуса барабана (творожные).

В зависимости от типа привода сепараторы могут быть с ручным и электроприводом. Передача вращения от электродвигателя к барабану у сепараторов второй группы осуществляется с помощью винтовой пары или ременной передачи. Барабаны сепараторов небольшой производительности устанавливают непосредственно на валу двигателя.

Один из основных технологических параметров, характеризующих работу сепараторов, - температура сепарируемого или очищаемого продукта.

Молоко, направляемое на сепарирование или очистку, должно иметь температуру 40...45°С. Высокотемпературное сепарирование проводят при температуре 60...85˚С, при сепарировании холодного молока продукт имеет температуру 4...10˚С.

Основными узлами сепаратора любого типа (рис. 2.2) являются станина, состоящая из корпуса и чаши, барабан, приемно-выводное устройство и приводной механизм, включающий в себя вертикальный вал (веретено) и горизонтальный вал с зубчатым колесом.

В корпусе станины размещен приводной механизм, на вертикальном валу которого установлен барабан. Чаша станины закрыта крышкой, служащей для размещения приемно-выводного устройства. У саморазгружающихся и сопловых сепараторов имеется приемник осадка или сгущенной фракции (например, творожного сгустка). Электродвигатель фланцевого исполнения расположен сбоку от станины, и его вал соединяется с приводным механизмом через разгонную центробежную фрикционную муфту.

В зависимости от технологического назначения барабаны сепараторов различаются конструктивным исполнением (рис. 2.3).

Рис 2.2. Сепаратор - молокоочиститель полузакрытого типа с ручной выгрузкой осадка:

1- корпус станины, 2- тормоз, 3- приемно - выводное устройство, 4- крышка сепаратора, 5- чаша станины, 6- стопор барабана, 7- барабан, 8- вертикальный вал (веретено), 9- зубчатое колесо горизонтального вала.

Барабан сепаратора-сливкоотделителя открытого типа с ручной выгрузкой осадка (рис. 2.4) состоит из основания, уплотнительного кольца, тарелкодержателя, пакета тарелок, разделительной тарелки, корпуса и стяжной гайки. Основание барабана имеет сложную форму и представляет собой днище с центральной трубкой. В трубке имеется три прямоугольных канала для прохода молока в тарелкодержатель. Верхняя часть трубки имеет резьбу для крепления стяжной гайки. На ободе основания сделан вырез под фиксатор корпуса, а на конической части основания - выступ для фиксации тарелкодержателя с пакетом тарелок. В центре основания имеется продолговатый выступ, обеспечивающий надежное зацепление барабана с вертикальным валом сепаратора.


Пакет из 48...56 тарелок служит для образования межтарелочного пространства, в котором происходит разделение молока на сливки и обезжиренное молоко.

Зазор межтарелочного пространства создается тремя шипами высотой 0,4 мм, расположенными на внешней стороне каждой тарелки Последняя тарелка имеет шипы с обеих сторон, что позволяет образовать зазор не только с соседней тарелкой, но и с основанием барабана. В каждой тарелке по три отверстия; при сборке тарелок в пакет формируются вертикальные каналы, через которые молоко распределяется в межтарелочном пространстве.

Рис 2.3. Технологические схемы барабанов сепараторов различных типов:

а - барабан сепаратора - разделителя (сливкоотделителя), б - барабан сепаратора - осветлителя(молокоочистителя), в - барабан соплового сепаратора (творожного), г - барабан сепаратора с периодической выгрузкой осадка: 1- тарельчатые вставки, 2- осадок (сепараторная слизь), 3- тяжелая фракция (обезжиренное молоко), 4- легкая фракция (сливки), 5- осветленная жидкость (чистое молоко), 6- творожная сыворотка, 7- приемник творога, 8- творожный сгусток, 9- сопло, 10- напорный диск сливок, 11- напорный диск обезжиренное молока, 12- разгрузочные окна, 13- подвижное днище (поршень), 14- клапан управления движением поршня, 15- приемник осадка.

На верхней поверхности разделительной тарелки выполнены три ребра, обеспечивающие необходимый зазор между внутренней поверхностью корпуса барабана и разделительной тарелкой. В верхней цилиндрической части разделительной тарелки есть отверстие для отвода сливок.

Корпус барабана имеет коническую форму с некоторым расширением в основании, которое образует грязевое пространство. В нижней части корпуса с наружной стороны расположен фиксатор, входящий при сборке в вырез основания барабана. В верхней части шейки корпуса имеются два щелевых выходных канала для отвода обезжиренного молока, отверстие для выхода сливок и регулировочный винт, представляющий собой втулку с резьбой.

Количественное соотношение между сливками и обезжиренным молоком в сепараторах может изменяться в весьма широких пределах -от 1: 3 до 1:12. При этом необходимое соотношение достигается с помощью регулировочных устройств, принцип действия которых основан либо на изменении скорости истечения сливок или обезжиренного молока путем изменения напора, либо на изменении сечения выходного отверстия.

Рис.2.4. Барабан сепаратора - сливкоотделителя открытого типа с ручной выгрузкой осадка: 1- стяжная гайка, 2- корпус барабана, 3- разделительная тарелка, 4- пакет тарелок, 5- тарелкодержатель, 6- уплотнительное кольцо, 7- основание барабана.

При первом способе регулировочный винт с отверстием неизменного сечения ввертывают внутрь. Скорость истечения сливок снижается, так как центробежная сила по мере приближения винта к оси вращения уменьшается, а с ней уменьшается и напор. Сливок при этом будет выходить меньше, но они будут более вязкими и содержать больше жира.

Второй способ регулирования жирности сливок реализован в полузакрытых сепараторах-сливкоотделителях. Отличительной особенностью барабана сепаратора такого типа является конструкция разделительной тарелки, в верхней части которой размещены две напорные камеры. В одной камере находится напорный диск сливок приемно-выводного устройства сепаратора. В камере, расположенной в горловине крышки барабана, размещен напорный диск обезжиренного молока. В таких сепараторах соотношение количества сливок и обезжиренного молока регулируется вентилями (дросселями), установленными на патрубках приемно-выводного устройства.

Более сложное устройство имеют барабаны сепараторов с периодической выгрузкой сепараторной слизи (осадка). В основании барабана (рис. 2.5) расположено подвижное днище (поршень). Уплотнение между основанием, а также крышкой барабана и поршнем обеспечивают уплотнительные кольца. На уровне стыка между поршнем и крышкой барабана размещены окна для выгрузки осадка. В верхнем положении поршня окна закрыты, при его опускании осадок выгружается через окна в приемник.

Рис. 2.5. Барабан сепаратора - сливкоотделителя с периодической выгрузкой осадка:

1- основание барабана, 2- подвижное днище (поршень), 3, 5- уплотнительные кольца, 4- окно для выгрузки осадка, 6- затяжное кольцо, 7- крышка барабана, 8- клапан разгрузки, 9- жиклер, 10- распределительное кольцо буферной воды.

Принцип работы барабана сепаратора-сливкоотделителя с периодической выгрузкой осадка основан на создании определенного перепада давления между молоком в барабане и жидкостью (буферной водой) под подвижным днищем (поршнем). Разгрузкой управляют с помощью гидравлической системы в ручном и автоматическом режимах. Основные элементы системы - гидроузел и пульт управления.

В состав гидроузла (рис. 2.6) входят фильтр, редуктор для регулирования давления воды в системе разгрузки барабана (буферной воды), манометры, электромагнитный вентиль для подачи размывочной воды в приемник осадка, ручные вентили для управления работой сепаратора вручную, а также трехходовой кран для подпитки водой полости под подвижным днищем (поршнем) барабана в закрытом положении.

Пульт управления включает в себя три реле времени, кнопки включения пульта и ручной разгрузки, сигнальные лампы и предохранители. Программное реле времени служит для установки интервала между разгрузками (30мин), а также управления работой двух других реле. Одно из них необходимо для управления работой электромагнитным вентилем подачи размывочной воды, второе-для регулирования времени разгрузки (0,2...0,5с) барабана сепаратора.

Гидравлическая система управления разгрузкой сепаратора воздействует на подвижное днище (поршень) барабана с помощью двух клапанов разгрузки, расположенных в корпусе барабана под углом 180°. Клапаны соединены высверленными в теле основания каналами с полостью под поршнем и устройством подачи буферной воды под основанием барабана. Они открываются в пространство между вертикальной стенкой барабана и кожухом сепаратора. Приемно-выводные устройства сепараторов предназначены для ввода молока в сепаратор и отвода продуктов сепарирования. У сепараторов открытого типа (рис. 2.7) приемно-выводное устройство представляет собой чашеобразную емкость, надеваемую на станину сепаратора.

Рис. 2.6. Схема подключения гидроузла саморазгружающегося сепаратора:

1- фильтр, 2, 6- вентили ручного управления, 3- электромагнитный вентиль подачи размывочной воды, 4- трехходовой кран режимов работы, 5- электромагнитный вентиль подачи буферной воды, 7, 9- манометры, 8- редуктор давления, РВ - реле времени.

Емкость состоит из приемной поплавковой камеры и двух распределительных камер с рожками для сливок и обезжиренного молока. Приемная поплавковая камера обеспечивает равномерную подачу молока, поступающего из емкости для хранения. Поплавковая камера имеет в центре трубку с калиброванным отверстием, его диаметр обеспечивает номинальную производительность сепаратора при определенном уровне молока, который поддерживается с помощью поплавка. При недостаточном уровне молока поплавок опускается и открывает доступ молока из емкости в камеру. При превышении номинального уровня поплавок закрывает сливное отверстие емкости с молоком, и уровень в камере понижается.

Элементы чашеобразной емкости сепаратора открытого типа изготовлены из листового металла (обычно луженого или нержавеющего стального листа), у сепараторов небольшой производительности-из полимерных материалов.

Для того чтобы обеспечить попадание вытекающих из отверстий в барабане сливок и обезжиренного молока в соответствующие распределительные камеры, вертикальные валы сепараторов открытого типа можно регулировать по высоте специальным винтом, расположенным под нижней опорой вертикального вала сепаратора. Вместе с валом опускается или поднимается барабан.

Рис. 2.7.Сепаратор-сливкоотделитель открытого типа:

1- чаша станины, 2- распределительная камера обезжиренного молока, 3- распределительная камера сливок, 4- приемная поплавковая камера, 5- поплавок, 6- днище чашеобразной емкости, 7- кран, 8- трубка поплавковой камеры, 9- винт регулировки жирности сливок, 10- пробка заливки масла, 11- кнопка пульсатора, 12- смотровое окно уровня масла, 13- пробка слива масла, 14- винт регулировки барабана по высоте.

У сепаратора малой производительности с электроприводом эта регулировка связана с подъемом или опусканием двигателя вместе с барабаном с помощью винта в днище корпуса сепаратора. Полузакрытые сепараторы имеют более сложную конструкцию приемно-выводного устройства (рис. 2.8), которое состоит из одного (для молокоочистителей) или двух (для сливкоотделителей) напорных дисков.

Напорный диск выполнен в виде двух плоских кружков, между которыми расположено несколько спиральных каналов для жидкости. С помощью концентрично расположенных патрубков каналы дисков соединены с отводными трубками, на концах которых находятся регулировочные вентили-дроссели.

По оси приемно-выводного устройства установлена центральная трубка, по которой молоко поступает в барабан. Трубка может быть соединена непосредственно с трубопроводом подачи молока или с поплавковой камерой, регулирующей подачу молока в сепаратор.

С помощью регулировочных вентилей можно изменять жирность получаемых сливок. Интенсивность потока сливок измеряется ротаметром-сливкомером, представляющим собой корпус с находящимся в нем поплавком. На поплавке установлен шток, который входит в стеклянную градуированную трубку. Чем интенсивнее движение потока сливок, тем выше поднимается поплавок. По положению головки штока относительно шкалы трубки оценивается расход сливок за единицу времени.

При работе сепаратора поступающее в барабан молоко вытесняет продукты сепарирования в напорные камеры. Вращаясь вместе с этими камерами, сливки, обезжиренное или очищенное цельное молоко захватываются спиральными каналами неподвижных дисков. При этом скоростной напор вращающейся жидкости переходит в напор статический, в результате чего в каналах дисков давление продуктов сепарирования поднимается до 250...300 кПа. С помощью этого давления сливки и обезжиренное молоко перемещаются по трубопроводам в теплообменные аппараты из емкости для хранения. Таким образом, сепаратор выполняет функции насоса.

Рис. 2.8. Приемно-выводное устройство полузакрытого сепаратора сливкоотделителя:

1- напорный диск сливок, 2- напорный диск обезжиренного молока, 3- патрубок вывода продуктов сепарирования, 4- регулировочный вентиль сливок, 5, 7- манометры, 6- центральная трубка входа молока, 8- регулировочный вентиль обезжиренного молока.

В герметичном сепараторе молоко на сепарирование подается в барабан снизу, через полый вертикальный вал, который нижним концом выходит под станину. На конце вала закреплены диски насосного устройства, которые, вращаясь вместе с валом, играют роль напорного колеса и нагнетают молоко в барабан. Молоко попадает под тарелкодержатель, а затем по вертикальным каналам, образованным отверстиями в тарелках, распределяется по их пакету. Сливки в таком барабане собираются в центральной трубке тарелкодержателя и выводятся из барабана под давлением, создаваемым на входе сепаратора напорным устройством.

Обезжиренное молоко, пройдя между разделительной тарелкой и крышкой барабана, попадает в камеру напорного диска и выводится из сепаратора. Герметические сепараторы обеспечивают наиболее полное выделение жировой фазы из молока, так как в процессе работы их барабана отсутствуют вспенивание и образование воздушных пузырьков, нарушающих разделение молока.

В современных сепараторах-сливкоотделителях в обезжиренное молоко попадают жировые шарики, размер которых составляет меньше 0,1 мкм, при этом в обезжиренном молоке остается 0,02...0,05 % жира (табл. 2.1).

При производстве многих молочных продуктов в качестве сырья используют молоко определенной жирности, например с содержанием жира 3,2 или 3,5 %. Такое молоко называют нормализованным, а процесс приведения молока к стандартной жирности - нормализацией. Простейший способ нормализации молока заключается в добавлении к нему в определенной пропорции обезжиренного молока или сливок и смешивании их в емкости. Более удобным является способ нормализации молока в потоке, который осуществляется с помощью сепараторов-сливкоотделителей, оборудованных приспособлением для нормализации, которое установлено на приемно-выводном устройстве сепаратора.

На рис. 2.9 показано одно из устройств для нормализации молока в потоке с помощью сепаратора-сливкоотделителя. Трубопровод выхода сливок соединен патрубком с трубопроводом отвода обезжиренного молока. На выходе сливок установлен дроссель. В процессе нормализации молока часть сливок по патрубку направляется к выходу из сепаратора и, смешиваясь с обезжиренным молоком, образует нормализованную смесь. Избыток сливок выходит через трубопровод. При полностью открытом дросселе сепаратор работает как сливкоотделитель. Ручка дросселя имеет форму колпачка, закрывающего цилиндрическую часть корпуса дросселя, на котором нанесена шкала. С помощью этой шкалы приспособление для нормализации устанавливают на заданную жирность молока по таблице. Точность нормализации молока по содержанию жира с помощью такого приспособления ± 0,2 %.

В зависимости от технологического назначения большинство сепараторов в своем устройстве имеет особенности.

Табл.2.1. Техническая характеристика сепараторов сливкоотделителей.

Показатель

Открытый с ручной выгрузкой осадка

Полузакрытый с ручной выгрузкой осадка

Производительность, м3/ч

Частота вращения барабана, с-1

Объем грязевого пространства, дм3

Габаритные размеры, мм

Масса без электродвигателя, кг

Так, в сепараторах для высокожирных сливок увеличены расстояния между тарелками (до 0,6 мм), а также между тарелками и тарелкодержателем. Приемник высокожирных сливок (жирностью 82...85%) и патрубок для их отвода имеют больший уклон. Подача сепарируемых сливок (жирностью 30...40%) в сепаратор регулируется с помощью крана. Настройка сепаратора на получение высокожирных сливок для различных видов сливочного масла производится изменением количества сливок и давления на выходе пахты (по манометру с помощью регулирующего поршня)

Колл" href="/text/category/koll/" rel="bookmark">коллекторными высокооборотными электродвигателями однофазного тока напряжением 220 В.

Поскольку сепараторы в качестве привода оснащены асинхронными электродвигателями промышленной частоты 50 с частотой вращения не более 50 с-1, к приводному механизму, который обеспечивает вращение барабана сепаратора с частотой 80с-1, предъявляют особые требования.

Наиболее распространенная схема приводного механизма сепаратора приведена на рис. 2.10. Электродвигатель приводит во вращение ведущую часть муфты, колодки которой под действием центробежной силы прижимаются к внутренней цилиндрической части полумуфты, жестко установленной на горизонтальном валу привода. На этом же валу закреплено зубчатое колесо для передачи вращения от горизонтального вала сепаратора к вертикальному. Последний имеет многозаходную винтовую нарезку, входящую в зацепление с зубчатым колесом.

Рис. 2.10 Схема приводного механизма сепаратора.

1- электродвигатель, 2- ведущая часть центробежной разгонной муфты, 3- ведомая часть муфты, 4- горизонтальный вал, 5- зубчатое колесо, 6- упругая горловая опора, 7- барабан, 8- вертикальный вал.

Движение в зубчатой паре привода сепаратора осуществляется по принципу винтовой пары, в которой вертикальный вал является винтом, а колесо - сектором. При движении винтовая нарезка вертикального вала с большой скоростью (до 25 м/с) скользит по зубьям колеса, поэтому для уменьшения их износа винтовую пару изготовляют из материалов с малым коэффициентом трения и хорошей износостойкостью. Не менее важное значение имеют точность изготовлении и чистота обработки поверхностей зацепления.

Винтовая передача приводного механизма сепаратора в процессе работы должна обязательно смазываться, для чего в картере станины сепаратора имеются пробки для заливки и слива смазки.

Важно отметить, что зубчатая пара привода сепаратора передает вращение в двух направлениях: от электродвигателя к барабану в процессе его разгона и работы, а также от барабана, обладающего большой инерцией, к электродвигателю при выключении сепаратора. Объясняется это многозаходной (11заходов) конструкцией винта и большим углом наклона его зуба. Передаточное отношение у винтовых пар сепараторов находится в пределах 3...6.

Одной из важнейших особенностей приводного механизма сепараторов является наличие так называемой упругой горловой опоры, т. е. установка верхнего подшипника вертикального вала с возможностью некоторой свободы перемещения в горизонтальной плоскости. Для этого между верхним подшипником, расположенным под основанием барабана, и его гнездом в станине сепаратора вводят упругий элемент. У малых сепараторов это может быть резиновая втулка. У более производительных - группа радиально расположенных пружин сжатия (обычно шесть под углом 60° друг к другу).

Неточности изготовления и взаимного расположения деталей барабана при сборке приводят к некоторому смещению оси вертикального вала, вращающегося в подшипниках, относительно оси вращения барабана. Возникновение в этом случае центробежной силы отрицательно влияет на работу сепаратора. Наличие упругого элемента в горловой опоре позволяет барабану в определенных пределах самобалансироваться (барабан наклоняет вертикальный вал таким образом, чтобы центр его тяжести совпадал с геометрической осью вращения барабана).

Для амортизации вертикальных колебаний барабана вертикальный вал сепаратора опирается на пружину, расположенную под нижним подшипником.

У сепараторов большой производительности вертикальные колебания барабана воспринимаются группой пружин, установленных в горловой опоре вертикального вала параллельно его оси. Сепараторы производительностью до 1000 л/ч таких пружин не имеют, так как масса их барабанов сравнительно невелика. Вместе с этим небольшие колебания вертикального вала могут привести к заклиниванию нижнего подшипника, и для того чтобы этого избежать, подшипник выполняют сферическим. Частоту вращения барабана сепаратора контролируют с помощью стрелочного тахометра и специального устройства - пульсатора. Особенность его работы заключается в том, что при нажатии кнопки пульсатора рукой при каждом обороте эксцентрикового вала ощущается один толчок. Эксцентриковый вал через червячную пару соединен с шестерней, служащей для привода тахометра и пульсатора и установленной на горизонтальном валу механизма привода сепаратора. В инструкции к сепаратору указано число толчковое минуту, которое должен иметь пульсатор при номинальной частоте вращения барабана. Тахометр показывает частоту вращения горизонтального вала привода сепаратора, значение которой также указано в инструкции.

Барабаны сепараторов обладают большой кинетической энергией, и при отключении двигателя сепаратор продолжает вращаться в течение довольно длительного времени. У высокопроизводительных сепараторов время падения оборотов до нуля занимает несколько десятков минут. Так как после окончания цикла работы сепараторы необходимо разобрать, очистить от осадка и промыть (за исключением саморазгружающихся с циркуляционной мойкой), с целью экономии времени обслуживающего персонала сепараторы оборудуют специальными тормозными устройствами. Такое устройство представляет собой две колодки с накладками из фрикционного материала. Через подпружиненный стержень они соединены с ручкой и расположены в чаше сепаратора под углом 180° друг к другу. В таком тормозном устройстве колодки воздействуют на наружную стенку барабана.

В некоторых конструкциях привода, в том числе у саморазгружающихся сепараторов, тормоз устанавливают в корпусе разгонной центробежной муфты. В этом случае колодка тормоза прижимается к наружной поверхности чаши муфты, жестко соединенной с горизонтальным валом привода. У сепараторов средней производительности в чаше станины имеются стопорные болты для фиксации барабана при его чистке и мойке. Для этого при заворачивании они входят в гнездо корпуса барабана.

2.3. Оборудование для гомогенизации молока и молочных продуктов

Гомогенизация - это раздробление (диспергирование) жировых шариков путем воздействия на молоко или сливки значительных внешних усилий. В процессе обработки уменьшаются размеры жировых шариков и скорость всплывания. Происходит перераспределение оболочечного вещества жирового шарика, стабилизируется жировая эмульсия, и гомогенизированное молоко не отстаивается.

Гомогенизаторы клапанного типа служат для обработки молока и сливок с целью предотвращения их расслаивания при хранении.

Гомогенизаторы-пластификаторы роторного типа применяют для изменения консистенции таких молочных продуктов, как плавленые сыры и сливочное масло. В обработанном с их помощью сливочном масле водная фаза диспергируется, в результате чего продукт лучше хранится.

Принцип действия гомогенизаторов клапанного типа, получивших наибольшее распространение, заключается в следующем. В цилиндре гомогенизатора на молоко оказывается механическое воздействие при давлении 15...20 МПа. При подъеме клапана, приоткрывающем узкую щель, молоко выходит из цилиндра. Это возможно при достижении в цилиндре рабочего давления. При проходе через узкую круговую щель между седлом и клапаном скорость молока возрастает от нулевой до величины, превышающей 100 м/с. Давление в потоке резко падает, и капля жира, попавшая в такой поток, вытягивается, а затем в результате действия сил поверхностного натяжения дробится на мелкие капельки-частицы.

При работе гомогенизатора на выходе из клапанной щели часто наблюдаются слипание раздробленных частичек и образование «гроздьев», снижающих эффективность гомогенизации. Во избежание этого применяют двухступенчатую гомогенизацию (рис. 2.11). На первой ступени создается давление, равное 75 % рабочего, на второй ступени устанавливается рабочее давление. Для проведения гомогенизации температура молочного сырья должна быть 60...65°С. При более низкой температуре усиливается отстаивание жира, при более высокой могут осаждаться сывороточные белки.

Рис.2.11. Гомогенизирующая головка.

I- первая ступень, II - вторая ступень, 1- седло клапана, 2- клапан, 3- шток, 4- нажимной винт, 5- стакан, 6- пружина, 7 ,8- корпуса.

Гомогенизатор с двухступенчатой гомогенизирующей головкой (рис. 2.12) состоит из станины, корпуса, плунжерного блока, гомогенизирующей головки, привода и кривошипно-шатунного механизма.

Рис. .2.12. Гомогенизатор А1-ОГМ-5

1- электродвигатель, 2- станина с приводом, 3- кривошипно-шатунный механизм с системами смазки и охлаждения, 4- блок плунжерный с гомогенизирующей и манометрической головками и предохранительным клапаном, 5- манометрическая головка, 6- гомогенизирующая головка, 7- клиноременная передача.

Станина изготовлена из швеллеров и снаружи обшита листовой сталью. Внутри ее установлен электродвигатель на плите, которая крепится к станине шарнирно на двух кронштейнах.

Плунжерный блок состоит из корпуса плунжера, манжетных уплотнений, всасывающих и нагнетательных клапанов и седел клапанов. При работе одной плунжерной пары жидкость поступает к гомогенизирующей головке пульсирующим потоком. С целью его выравнивания в гомогенизаторах обычно применяют трехплунжерные насосы, приводимые в действие

коленчатым валом, у которого колена смещены на 120° относительно друг друга.

К плунжерному блоку болтами крепятся двухступенчатая гомогенизирующая головка, манометрическая головка и предохранительный клапан, расположенный с противоположной стороны гомогенизирующей головки. Манометрическая головка имеет дросселирующее устройство, позволяющее уменьшить амплитуду колебаний стрелки манометра во время работы гомогенизатора. Привод гомогенизатора включает в себя электродвигатель и ременную передачу.

Кривошипно-шатунный механизм состоит из коленчатого вала, установленного на двух конических роликовых подшипниках, шатунов и ведомого шкива. Шатуны соединены с ползунами шарнирно.

Промышленность выпускает гомогенизаторы различной производительности (табл. 2.2).

Табл.2.2. Техническая характеристика гомогенизаторов для молока и жидких молочных продуктов

Показатель

Производительность, м3/ч

Рабочее давление, МПа

Температура обрабатываемого продукта, ºС

Число плунжеров

Ход плунжеров, мм

Частота вращения коленчатого вала, с-1

Число ступеней гомогенизатора

Мощность электродвигателя, кВт

Габаритные размеры, мм

1430×1110×1640

1480×1110×1640

Масса, кг

В том случае, когда при гомогенизации необходимо исключить доступ микроорганизмов к обрабатываемому продукту, применяют специальные асептические гомогенизирующие головки. В таких головках в пространство, ограниченное двумя уплотнительными элементами, подается горячий пар под давлением 30...60 кПа. Эта высокотемпературная зона служит барьером, препятствующим попаданию бактерий в цилиндр гомогенизатора.

Гомогенизаторы-пластификаторы по принципу действия и устройству отличаются от гомогенизаторов клапанного типа. Рабочим органом в них является ротор, который может иметь различное число лопастей - 12, 16 или 24.

Гомогенизатор-пластификатор (рис. 2.13) состоит из станины, корпуса со шнеками, приемного бункера и привода. Привод позволяет регулировать частоту вращения подающих шнеков (с помощью вариатора) в пределах 0,2,..0,387 с-1. Частота вращения ротора с лопастями не регулируется и составляет 11,86 с-1 . Принцип работы машины заключается в следующем. Сливочное масло подается в бункер, откуда с помощью двух шнеков, вращающихся в противоположных направлениях, продавливается через ротор и из насадки с диафрагмой выходит в бункер фасовочного аппарата.

Рис. 2.13. Гомогенизатор М6-ОГА для сливочного масла:

1- колесо, 2- станина, 3- корпус, 4- крепление насадки, 5- насадка, 6- замок, 7- шнековая камера, 8- бункер, 9- пульт управления, 10- шнеки.

Для предотвращения налипания масла рабочие органы гомогенизатора смазывают перед началом работы специальным шрячим раствором. Производительность гомогенизатора зависит от частоты вращения подающих шнеков и составляет 0,76... 1,52 м3/ч. Мощность привода машины 18,3 кВт.

Гомогенизатор ЯЗ-ОГЗ предназначен для обработки расплавленной сырной массы при производстве плавленых сыров и состоит из следующих частей: основания, корпуса, комплекта гомогенизирующего инструмента, бункера, выгрузного устройства и привода.

Основание служит для крепления на нем составных частей гомогенизатора. В корпусе размещены рабочие узлы и уплотняющие устройства.

Гомогенизирующий инструмент (рис. 2.14) для подачи, измельчения и перемешивания расплавленной сырной массы выполнен в виде подвижных и неподвижных ножей, разделенных распорными кольцами, а также загрузочного лопастного колеса и выгрузного ротора. Подвижные ножи имеют специальные пазы, выполненные под определенным углом к торцевой поверхности, что способствует перемещению измельчаемого продукта к выгрузному устройству. Вал гомогенизирующего инструмента вращается с частотой 49 с-1.

Бункер для приема и накопления сырной массы имеет теплоизоляционную рубашку.

Выгрузное устройство в виде двух труб, соединенных между собой с помощью крана, служит для отвода гомогенизированной массы в дозатор фасовочного автомата.

Рис. 2.14. Комплект гомогенизирующего инструмента гомогенизатора:

1- неподвижное кольцо, 2- подвижное кольцо, 3- лопастное кольцо, 4- бункер, 5- подвижной нож, 6- корпус, 7- неподвижный нож, 8- выгрузной ротор, 9- вал гомогенизатора.

Привод состоит из двигателя мощностью 11 кВт, предназначенного для передачи вращения от вала к подвижной части гомогенизирующего инструмента.

Обработка продукта на гомогенизаторе ЯЗ-ОГЗ осуществляется следующим образом. Расплавленная сырная масса периодически или непрерывно подается в бункер гомогенизатора. Под действием разрежения, создаваемого загрузочным лопастным колесом, продукт поступает в гомогенизирующий инструмент, в котором, проходя последовательно через подвижные и неподвижные ножи, гомогенизируется и подается к выгрузному устройству.

Использование гомогенизатора позволяет отказаться от технологической операции процеживания сырной массы с целью удаления ее нерасплавленных частиц.

2.4. Оборудование для предварительного обезвоживания творожной и казеиновой массы

К этому оборудованию можно отнести сепараторы для обезвоживания творожного сгустка, аппараты дли отделения сыворотки и центрифуги. Большая часть этого оборудования описывается в разделах, посвященных производству соответствующих видов продукции (сыр, творог и т. д.).

Центрифуги, применяемые в молочной промышленности, могут быть отстойными и фильтрующими, периодического и непрерывного действия.

Отстойную центрифугу непрерывного действия для предварительного обезвоживания творожной массы в настоящее время применяют сравнительно редко.

Фильтрующая центрифуга периодического действия для обезвоживания молочного сахара состоит из ротора, кожуха, привода и пульта управления. Ротор цилиндрической формы изготовлен из нержавеющей стали. Его перфорированная поверхность снабжена металлической сеткой. Для повышения прочности ротор имеет два бандажа. Отверстия ротора диаметром 5 мм расположены в шахматном порядке с шагом 20 мм. Ротор закреплен на валу электродвигателя, установленного на основании с шаровой опорой Привод крепят болтами с резиновыми амортизаторами . Ротор и привод закрыты стальным кожухом. Для загрузки ротора продуктом предусмотрена загрузочная воронка. Крышка имеет блокирующее устройство.

Контрольные вопросы.

1. Какова средняя продолжительность непрерывной работы фильтров различного типа? 2. За счет чего повышается эффективность ультрафильтрации молочной сыворотки в системе «Сартокон-2»? 3. В каких случаях очистка молока с помощью сепараторов-молокоочистителей неэффективна? 4. Какие факторы влияют на процесс сепарирования молока? 5. Как регулируют жирность молока в сепараторах-сливкоотделителях различного типа? 6. В каких сепараторах подача молока в барабан осуществляется снизу? 7. Как осуществляется нормализация в сепараторах-сливкоотделителях? 8. Какие факторы влияют на гомогенизацию молока? 9. При каком давлении осуществляется гомогенизация на первой и второй ступенях? 10. Для чего гомогенизаторы комплектуют трехплунжерными насосами?

Машины и оборудование для первичной обработки молока. Типы и общая оценка очистки молока

Очистка молока - это удаление различных механических включений и примесей. Учитывая зависимость отиспользуемых доильных установок применяют:

Фильтры в виде марли, сложенной в три-пять слоев, фланели - два-три слоя, марли с прослойками из ваты, латунные, капроновые и лавсановые сетки;

Сепараторы-очистители (центробежная очистка молока).

К материалам для фильтров предъявляют следующие требования:

Высокая гигроскопичность и способность задерживать примеси мелких размеров;

Сохранение в загрязненном состоянии высокой влагопроводимости;

Сравнительно легкое отделœение накопленных загрязнений при промывке фильтров;

Минимальное и устойчивое гидравлическое сопротивление;

Высокая механическая прочность и стойкость к истиранию нитей фильтра при многократных изгибах и натяжениях;

Низкая стоимость материала для фильтра.

Пропускная способность фильтра, кг/ч:

где F- общая площадь фильтра, м 2 ; V - скорость протекания молока через фильтр, м/ч; р - плотность молока, кг/м 3 .

Общая площадь фильтра, м 2:

где F 0 - площадь сечения одного отверстия фильтра, м 2 ; п - число отверстий.

Скорость протекания молока через фильтр, м/ч,

где μ - коэффициент истечения молока (ц = 0,8); g -ускорение силы тяжести, м/с 2 ; h - высота столба продукта над фильтром, м.

Площадь фильтрующей ткани, крайне важно й для фильтрации молока, м 2 ,

где М - количество молока, подлежащего фильтрации, л; q - количество молока, проходящего через 1 м 2 фильтрующей ткани, л/м 2 .

При очистке молока с использованием сепаратора-очистителя определяют время непрерывной работы, ч,

, (32)

где V г р - объём грязевого пространства барабана, л; Р - процент отложения сепараторной слизи от общего объёма пропускаемого молока (Р= 0,03...0,06 %); L - производительность очистителя, л/ч.

Вместимость грязевого пространства барабана сепаратора-очистителя, л,

, (33)

где R max и R min - максимальный и минимальный радиусы грязевого пространства, см; Н - высота пакета тарелок барабана, см.

При очистке из молока удаляются механические и частично бактериологические примеси, что улучшает его качество, создаются предпосылки более длительного хранения.

Учитывая зависимость отвыполнения, фильтры для молока разделяют на: открытые и закрытые. В открытых молоко проходит сквозь фильтровальную перегородку под воздействием гидростатического давления, потому они имеют низкую производительность и быстро загрязняются. В закрытых фильтрах молоко проходит сквозь ткань под давлением.

Цедилки открытого типа используют при доении в переносные ведра. Фильтры - цедилки устанавливают на горловинах фляг, молочных танках и других емкостях.

Рис. 68. Цилиндрические фильтры с элементами многократного (а) и одноразового (б) использования:

1,7 -уплотнящие прокладки; 2 - корпус; 3 - фильтровальный элемент; 4 - кольцо; 5 - гайка; 6 – переходник; 8 -каркас; 9 – пробка; 10 – молокопровод.

Современные доильные агрегаты оснащены цилиндрическими молочными фильтрами (рис.68), установленными последовательно в линии молокопровода.

На практике используют молочные фильтры, рабочими элементами которых являются: ватные диски, марля, фланец, бумага, металлическая сетка, синтетические ткани (лавсан и тому подобное).

Сравнительно с хлопковыми фильтровальными элементами синтетические материалы имеют более стабильную скорость фильтрования, более высокую бактериологическую чистоту и прочность, легко моются и стерилизуются. При этом даже использование самых совершенных фильтровальных материалов не обеспечивает полной очистки молока от механических, а тем более бактериальных включений. Вместе с тем, поверхность фильтра быстро загрязняется слоем примесей, который влечет увеличение количества бактерий в молоке, проходящее сквозь такой загрязненный слой. В случае же длительного использования фильтра, остатки органических примесей разлагаются и резко увеличивают микробную флору.

В последнее время приобрели распространение одноразовые фильтры из бумаги. Οʜᴎ проще в эксплуатации и обеспечивают лучшую очистку молока.

Значительно более совершенным способом фильтрования и очистки молока является центробежная очистка. В этом случае молоко очищается не только от механических включений, а также от слизи, сгустков эпителия и крови, которые появляются в молоке при заболевании вымя. В отличие от фильтрования при центробежной очистке молоко не размывает загрязнений, которые откладываются в грязевом пространстве очистителя.

Для фермерских молочных, а также молокоперерабатывающих предприятий промышленность выпускает центробежные сепараторы-очистители разных типоразмеров по производительности. Οʜᴎ отличаются большой пропускной способностью, надежностью в работе, обеспечивают высокое качество очистки молока.

Машины и оборудование для первичной обработки молока. Типы и общая оценка очистки молока - понятие и виды. Классификация и особенности категории "Машины и оборудование для первичной обработки молока. Типы и общая оценка очистки молока" 2017, 2018.

Сразу же после очистки молоко охлаждают до 4…10°С и хранят при этой температуре до отправки на молокоприемные пункты.

Охлаждать молоко необходимо не только летом, но и зимой. Охлаждению подвергают также молоко после тепловой обработки.

Охлаждение молока можно проводить несколькими способами. Выбор способа охлаждения зависит от многих факторов, в том числе от типа охладителя, количества охлаждаемого молока, наличия холодной воды, добываемой из глубоких скважин, обеспеченности хозяйства электроэнергией для получения искусственного холода и др.

Наибольшее распространение получили различные оросительные охладители.

Охладители молока по конструкции делятся на плоские и круглые, открытого и закрытого типа; по числу рабочих секций – на одно- и двухсекционные; по режиму работы – на прямоточные (параллельные) и противоточные.

На рабочие поверхности оросительных охладителей молоко поступает самотеком или под напором (орошает поверхность) и стекает по ним тонким слоем навстречу или параллельно движущемуся по другой стороне поверхности хладоагенту. При этом теплота от молока через тонкую стенку аппарата передается охлаждающей жидкости, которой может быть холодная вода с температурой не выше 10°С; ледяная вода, охлаждаемая во фригаторах или на холодильных установках до температуры 0…+4 °С, или рассол, охлаждаемый на холодильных установках и имеющий минусовую температуру.

Охладители, в которых охлаждающая жидкость движется сверху вниз в одном направлении с молоком, называют параллельными или прямоточными; а охладители, в которых охлаждающая жидкость движется под напором навстречу охлаждаемому молоку, – противоточными. Противоточный режим охладителя наиболее эффективен.

Конечная температура молока тем ниже, чем меньше начальная температура молока и воды. Разность между температурой охлажденного молока и начальной температурой воды обычно составляет от 2 до 5°С. Чем лучше охладитель, тем меньше эта разность. Например, при начальной температуре воды 10°С в односекционном противоточном охладителе молоко можно охладить до температуры 12…15°С. Для достижения глубокого охлаждения необходимо использовать воду с более низкой температурой или рассол. Например для охлаждения молока до 8°С необходима вода о температурой 3…6°С, а для глубокого охлаждения молока до 4…6 °С применяют рассол, имеющий минусовую температуру (–10…–12°С).

Вода, пройдя через охладитель, получает от молока теплоту и нагревается до 16…19°С; в зимнее время эту воду используют для поения коров и телят.

При помощи холодной водопроводной воды, добытой из глубоких скважин, можно «отнять» от молока до 80…85% излишней теплоты и тем самым в 4…5 раз уменьшить мощность холодильных установок и соответственно расход электроэнергии.

Некоторые схемы охлаждения с применением одно- и двухсекционных охладителей, а также танков-охладителей показаны на рисунке 5.1. Применяя схемы а и б, молоко можно охладить до 10…15°С, схему в – до 8…10°С, схемы г и д – до 4…6 °С.

а – с использованием колодезной воды (после охлаждения воду сливают в канализацию или используют для поения животных в зимнее время); б – то же (вода циркулирует в замкнутой системе и поступает в охладитель после охлаждения окружающим воздухом); в – с использованием «ледяной» воды, охлаждаемой и холодильной установке; г – с применением двухсекционного охладителя, во второй секции которого циркулирует рассол, охлажденный до минусовой температуры на холодильной установке; д – с применением танка-охладителя

Наиболее эффективны пакетные оросительные охладители (например, ООМ-1000А) и пластинчатые охладители, которые являются универсальными агрегатами, так как снабжены очистителями молока.

Пластинчатый молочный охладитель типа ОМ состоит из набора теплообмеиных пластин 10 (рис. 5.2), подвешенных на двух горизонтальных штангах (нижняя 9 – направляющая), которые закреплены в стойке 11. Тонкостенные пластины из нержавеющей профилированной стали с прокладками 7 собирают в одну секцию. Благодаря резиновым прокладкам внутри секции образуются изолированные каналы для прохождения охлаждаемого молока и охлаждающей жидкости. Каналы соединяются со штуцерами 1 для входа и выхода молока и жидкости.

Молоко распределяется по нечетным каналам между пластинами, стекает по рифленым поверхностям пластин вниз. Охлаждающая жидкость, подаваемая насосом, поднимается по четным каналам и через пластину отбирает теплоту у молока. Таким образом, молоко быстро охлаждается до заданной температуры.

Пластинчатые охладители имеют высокую эффективность охлаждения, небольшую массу, они компактны, их легко можно подобрать в наиболее оптимальном сочетании.

Высокая эффективность охлаждения достигается благодаря профилированным тонкостенным пластинам, которые не только хорошо проводят теплоту, но и создают турбулентное движение молока и охлаждающей жидкости, при этом теплота отводится от молока сразу через две пластины.

Наиболее распространенные металлы для изготовления теплообменных пластин и деталей, соприкасающихся с молоком – никелесодержащая нержавеющая сталь и титан.

Ряд пластинчатых аппаратов имеют легкоразборную конструкцию, позволяющую быстро ослаблять пакет и сливать остаток жидкости без полной разборки аппарата.

При эксплуатации и техническом обслуживании пластинчатых охладителей нужно проявлять осторожность, чтобы не повредить фигурные резиновые прокладки, отделяющие одну пластину от другой.

Недостаток пластинчатых охладителей – большое число фигурных резиновых прокладок, которые требуют осторожного и умелого обращения с ними.

Высокопроизводительные пластинчатые охладители оснащены приборами автоматического контроля, регулирования и регистрации температуры охлаждения молока.

Охладитель снабжен центробежным очистителем, производительностью от 400 до 600 л/ч.

Технология и оборудование для сепарации и пастеризации молока.

Сливки от плазмы молока можно отделять двумя способами – отстаиванием и сепарированием.

Сепарирование молока – это механический способ разделения цельного молока на обезжиренное молоко и сливки с использованием для этого разности удельных весов и центробежной силы.

Преимущества сепарирования молока состоят в следующем:

степень обезжиривания достигает 99,98% против 70…75% при отстаивании;

возможность получения свежих сливок и обезжиренного молока для молодняка;

дополнительная очистка сливок и молока от механических примесей;

возможность регулировки жирности сливок в больших пределах.

Молоко сепарируют с помощью сепараторов.

Зооинженерные требования к сепараторам. К сепараторам предъявляют следующие требования:

конструкция сепаратора должна обеспечивать непрерывность процесса, быстроту разделения и возможность автоматизации;

наиболее полное выделение жира из молочной плазмы;

продолжительность работы сепаратора без остановок;

возможность регулировки жирности сливок в заданных пределах;

отсутствие пены во время сепарирования;

полное удовлетворение санитарно-гигиенических требований;

плавность и легкость хода, надежность и долговечность работы;

быстрота разборки и сборки;

простота устройства, удобство в эксплуатации и обслуживании.

Классификация сепараторов. Сепараторы для молока классифицируют по следующим показателям:

производственному назначению. К ним относятся: сливкоотделители, очистители с ручной очисткой грязевого пространства грязевой камеры и саморазгружающиеся, нормализаторы, универсальные сепараторы, специальные сепараторы для дробления жировых частиц (гомогенизаторы) и получения высокожирных сливок при любых температурах молока;

способу защиты процесса от доступа воздуха – открытые, полугерметические и герметические;

способу привода – с ручным, механическим и комбинированным приводом.

Конструкция сепараторов. Рассмотрим некоторые сепараторы.

Сепаратор СОМ-3-1000 состоит из станины, механизма привода, барабана и молочной посуды.

Основной рабочий орган – барабан. В него входят корпус с центральной трубкой, тарелкодержатель, пакет разделительных тарельчатых вставок, верхняя разделительная тарелка, крышка, уплотнительное кольцо и затяжная гайка.

Центральная трубка корпуса закрыта снизу. Ее ребро служит для установки в прорезь веретена барабана. Верхняя разделительная тарелка в центральной части имеет цилиндрическую вытяжку, в которой сбоку помещена впайка с отверстием для регулировочного винта. На поверхности разделительных тарелок находятся три отверстия, расположенные на 120° один относительно другого. Они образуют в пакете три канала для прохода молока. Зазор между тарелками 0,4…0,5 мм. Свободное пространство между пакетом тарелок и крышкой корпуса называют грязевым.

Технологический процесс работы сепаратора заключается в следующем. Из поплавковой камеры молоко через центральную трубку барабана движется в его нижнюю часть и, поднимаясь через каналы пакета тарелок, распределяется между ними и движется от центра барабана к его периферии по межтарелочным пространствам. Более легкие жировые шарики выделяются из молока в межтарелочных пространствах и всплывают, образуя потоки в направлении оси барабана. Обезжиренное молоко движется к периферии барабана, где в грязевом пространстве из него выделяются механические примеси Очищенное обезжиренное молоко проходит над разделяющей тарелкой к отверстию для выхода его из барабана в молочную посуду. Сливки поднимаются к центральной трубке, движутся под верхней разделительной тарелкой и выводятся через отверстие регулировочного винта в сборник для сливок. Жирность сливок регулируют поворотом винта выходного отверстия для сливок.

Пастеризацией называется процесс нагрева молока до температуры 63…90°С при атмосферном давлении с целью уничтожения микроорганизмов и сохранения питательных свойств молока при хранении.

Тепловая обработка молока до температуры не менее 110°С называется стерилизацией.

Стерилизацию применяют при производстве особо стойкого в хранении цельного молока и молочных консервов, предназначенных для длительного хранения.

В производственной практике используют три режима пастеризации:

длительный – нагрев молока до температуры 63 °С с последующей выдержкой при этой температуре в течение 30 мин;

кратковременный – до температуры 72 ºС с выдержкой в течение 20…30 с;

мгновенный – до температуры 85…90 °С без выдержки.

Для создания тепловых режимов пастеризации и стерилизации на животноводческих фермах и комплексах применяют соответствующее оборудование.

Зооинженерные требования к пастеризаторам молока. Аппараты, применяемые для пастеризации молока и молочных продуктов, называют пастеризаторами. К ним предъявляют следующие требования:

обеспечение полного уничтожения микробов всех форм;

универсальность в отношении возможности обработки различных продуктов;

работа аппарата не должна ухудшать иммунобиологические, физические и химические свойства продуктов;

высокая производительность при малом расходе пара;

простота устройства и надежность в эксплуатации;

рабочие органы аппарата, соприкасающиеся с продуктом, должны быть стойкими против химических воздействий продукта и моющих жидкостей;

отсутствие потерь молока и молочных продуктов при пастеризации.

В зависимости от типа нагревателя при пастеризации используют тепловое воздействие (тепловое нагревание), холодное обеззараживание с использованием ультрафиолетового облучения и высокочастотного вибратора, электронагрев (индукционный и омический).

Классификация пастеризаторов. Аппараты для пастеризации молока, получившие наибольшее распространение в сельскохозяйственном производстве, подразделяются по следующим признакам:

по конструкции – открытого (с доступом воздуха) и закрытого (без доступа воздуха) типов; трубчатые и пластинчатые с вытеснительным барабаном; вакуумные и пароконтактные;

характеру выполнения процесса – непрерывного и периодического действия;

источнику использования энергии – тепловые и электрические;

режиму работы – длительной, кратковременной и мгновенной пастеризации.

Для пастеризации молока и молочных продуктов используют как отдельно пастеризаторы, так и системы, включающие в себя пастеризаторы и охладители, работающие в автоматизированном режиме.

Ванны длительной пастеризации типа ВДП отличаются по вместимости, габаритам и массе.

Пастеризатор паровой с двухсторонним обогревом (рис. 16.2) состоит из станины, на которой установлены барабан с механизмом привода, вертикального вала со шкивом и траверсой. Ванна и корпус паровой рубашки закреплены на опоре станины. Соединения уплотнены резиновыми прокладками. На ванне со стороны паровой рубашки предусмотрены капельные кольца для отвода конденсата. Крышка барабана крепится к ванне струбцинами.


Похожая информация.


Чтобы упорядочить проектирование и комплектование оборудования доильно-молочных блоков животноводческих ферм и комплексов, поставляющих Молоко предприятиям молочной промышленности, были разработаны схемы технологических линий обработки молока на фермах (3). Рекомендованы восемь схем, в которых использовано серийно выпускаемое оборудование, подобранное в комплекты, для ферм и комплексов с поголовьем от 200 до 2000 коров, и две схемы для отдельно стоящих центральных фермских молочных. Во всех схемах на случай эпизоотии животных предусмотрено технологическое оборудование для пастеризации молока - пастеризаторы периодического и непрерывного действия.

Все типовые проекты доильно-молочных и молочных блоков животноводческих ферм и комплексов разрабатывают в соответствии с этими технологическими схемами молочных линий. Оборудование для обработки молока должно обеспечивать высокое его качество и соответствие требованиям стандарта на молоко. ГОСТ 13264-88 предусматривает обязательную первичную обработку молока непосредственно на ферме - охлаждение его до температуры не выше 1O градусов

Все операции, связанные с первичной обработкой молока, подразделяют на основные и вспомогательные. К основным операциям относятся механическая и тепловая обработки, к вспомогательным - прием, взвешивание и транспортировка молока, а также мойка и стерилизация посуды Механическая обработка включает в себя очистку. нормализацию, сепарирование; тепловая - охлаждение и нагревание. Первичную обработку молока выполняют в поточных линиях на современных доильных установках по схеме доение - очистка - охлаждение - хранение при низкой температуре. На крупных фермах строят централизованные прифермские молочные, где можно

осуществлять частичную переработку молока. Если молоко из хозяйства поступает непосредственно в магазины, столовые, больницы, детские учреждения. то его вторично обрабатывают, т.е. очищают в центробежных очистителях, нормализуют по содержанию жира, пастеризуют охлаждают и фасуют в мелкую тару.

Зная количество молока. надаиваемого за 1 ч, рассчитывают технологическую линию обработки и хранения молока в соответствии с зоотехническими требованиями к машинам и оборудованию.

Часовая производительность линии доения меняется в различные периоды доения, а производительность технологического оборудования для обработки молока обычно постоянная, поэтому поточность работы линии в целом достигается путем включения в нее уравнительных баков. Его объем определяется по формуле

Vбак= (Qч - Qm. л) Т,

где Qm. л - производительность технологической линии обработки молока, т/ч.

Уравнительный бак подбирают после определения его теоретической вместимости. Обычно используют баки ПБ-ОРМ-0,5, ПБ-ОРМ-1, О и ПБ-ОРМ1-2, О с рабочими вместимостями соответственно 0. 5; 1, О и 2, О м 3

Взвешивают молоко на весах СМИ-250М и СМИ-500М, имеющих приемные ванны (резервуары) вместимостью соответственно 250 и 600 ДМ 3 .

Молоко очищают от примесей фильтрованием и центробежным способом. Фильтруется молоко а потоке марлевыми. фланелевыми или лавсановыми фильтрами. центробежный способ очистки молока от механических загрязнений с использованием сепаратора - молокоочистителя ОМА-ЭМ и молокоочистителей агрегата ОM-1A более совершенен. Его применяют в поточных линиях.

Сепаратор-молокоочиститель ОМА-3М используют в пастеризационной установке СПУ-3М и ОП2-У5.

Охлаждают молоко в потоке на оросительных (открытых) или пластинчатых (закрытых) охладителях молока. Хладоносителем служит в них вода или рассол.

Охладители оборудуют насосами для подачи в них охлаждающей жидкости и молока.

Отепленная вода из секции охлаждения молока водопроводной водой может быть направлена в водопроводную систему - в систему автопоения животных, что даст значительный экономический эффект.

Потребность в искусственном холоде (Дж/ч) подсчитывают по формуле

Q холл = Q m. лC (tн - tк),

где с - удельная теплоемкость 1 молока, Дж/кг ~С (с = 3920); tH и tк - соответственно начальная и конечная температура молока, С

Молоко, охлажденное ниже 1О градусов. хранят в вертикальных (В2-ОМВ-2,5 и В2-ОМВ-6З) или горизонтальных (В2-ОМГ-4 и 62-ОМ Г-1О) резервуарах объемами соответственно 2500, 6300, 4000 и 10 000 дм В них гарантируется повышение температуры молока в течение 12 ч не более чем на 1С при разности температур окружающего воздуха и молоке 2О С.

Если молоко отвозят с фермы после нескольких доек, го его хранят в танках-охладителях, оборудованных холодильными установками.

Объем ванны выбирают в зависимости от количества накапливаемого молока.

В сельском хозяйстве широко применяют танки-охладители TOM-1 ТОВ-1, АХУ-1000, СМ-1250 (Польша). ТОМ-2А и МК-20 (Германия). горизонтальные полуцилиндрические резервуары-охладители молока РПЮ-1, б и РПО-2 , 5. серий DXCRГ DXCE. DXCEM (Швеция), резервуары непосредственного охлаждения МКА-2000Л-2А, РНО-1,6 и РНО-2,5.

Искусственный холод для охлаждения воды или рассола (хладоносителей) получают в холодильной установке. В сельскохозяйственном производстве преимущественно используют хладоновые холодильные установки типа МВТ - 14 - 1-О, МВТ-2О-1-О, МКТ-14-2-С. МКТ-20-2-О и МКТ-28-2-О. водоохлаждающие установки с частичной аккумуляцией холода УВ-1О-О1 и АВ-ЗО, холодильные машины с аккумуляцией холода МХУ-12Т и ТХУ-14 для получения холода и теплой воды.

Молоко поставляемое потребителям, пастеризуют. чтобы избежать возникновения эпизоотии. В поточных технологических линиях обработки его сначала регенерируют (подогревают горячим молоком, идущим на охлаждение), а затем пастеризуют. Регенераторы позволяют повысить производительность пастеризатора. сократить расход пара на пастеризацию и уменьшить размеры охладителя. Пастеризуют молоко в ваннах длительной пастеризации Гб-ОПБ-300, Г6-ОПВ-600, Г6-ОПБ-1О00 объемом соответственно 300, 600, 1000 дм и с поверхностью нагрева 2; 3~2~ 4,2 м 2 .

Промышленность выпускает новые автоматизированные пластинчатые пастеризационно-охладительные установки.

A1 - ОКЛ-3, AK-1-ОКЛ-5, A1-ОКЛ-10 производительностью соответственно 3000, 5000. 10 000 дм/ч. Время выдержки молока 25 с. Коэффициент рекуперации 87%. Поверхности теплообмена пластинчатых теплообменных аппаратов установок составляют соответственно 14, 24 и 50 м". Удельный расход пара на 1000 дм 3 молока - 17. 5 кг. В установках типа А1-ОКЛ молоко очищается от механических загрязнений на саморазгружающихся сепараторах-молокоочистителях серии А1-ОЦМ для получения сливок и обрата, а также для нормализации молока no содержанию жира его сепарируют на сепараторах СОМ-3~10О0М, СПМФ-2000 и ОСП-3М. После расчета основного оборудования для обработки и частичной переработки молока определяют транспортные и вспомогательные операции процесса. Транспортировка молока. Молоко с ферм доставляют на молочный завод в большинстве случаев автоцистернами хозяйства, производящего молоко, или при централизованной вывозке - автоцистернами перерабатывающего предприятия. В сельском хозяйстве для этой цели используют автоцистерны АЦГIТ-О. 9, АЦПТ-1,7, АЦПТ-I. 9, АЦПТ 2. 1, АЦЛТ-2,8, АЦПТ-З3, АЦПТ-5б, АЦГ1Т-6 , 2. АЦГ1Т-12. В марке цифры показывают объем цистерны (м 3).

Автоцистерны позволяют сократить затраты труда и средств на обслуживание, уменьшить потери молока на 0,1.. 0I2% по сравнению с перевозкой его во флягах. Необходимо выбрать марку и определить потребность фермы в автоцистернах в соответствии с суточным объемом и разовым вывозом охлажденного молока. Следует иметь в виду, что себестоимость тонны-километра при перевозке молока зависит от расстояния доставки и объема автомобильной цистерны. Применять цистерны большой грузоподъемности экономически более выгодно. На крупных молочных комплексах значительно возрастает доля внутрифермских перевозок молока. В этом случае также весьма эффективно строительство прифермских транспортных напорных молокопроводов для сбора молока из отдельных блоков е общую молочную. Применяется также подземная транспортировка молока по трубам сжатым воздухом с использованием закладной детали - механического разделителя (З). При этом исключаются потери молока и удаляются со стенок молокопровода остатки моющих жидкостей, несколько снижается температура молока. Подземные молокопроводы изготовляют из полиэтиленовых труб (диаметром 11.. 50 мм и длиной более 10 км), которые закладывают ниже уровня промерзания грунта. Методика расчета различных типов молочных трубопроводов, аппаратов МОЛОЧНЫХ ЛИНИЙ подробно изложена в специальной литературе.