Традиционные системы разработки нефтяных и газовых месторождений.  Системы разработки нефтяных месторождений. Системы разработки, основанные на заложении скважин рядами

Разработка нефтяных и газовых скважин – это целый комплекс действия, направленных на выкачку углеводородного сырья из месторождения к забою. При этом должен предусматриваться определенный порядок расположения буровых по всей плоскости нефтеносного контура. Инженерами предполагается очередность введения в рабочее состояние скважин, установка технологического оснащения и поддержка режима работы на промысле.

Что собой представляет разработка нефтяных и газовых скважин

Разработка скважины на нефть или газ – это ряд мер, которые касаются непосредственно добычи природных ископаемых из недр Земли. Это целая наука, которая интенсивно развивается с самого начала существования отрасли промышленности. Сейчас разрабатываются передовые технологии извлечения углеводородов, новые способы распознавания процессов под землей, применения пластовой энергии. Помимо этого постоянно внедряются новые методы планирования и разведки месторождений.

Главная задача комплекса действий, направленных на добычу ресурсов, – рациональное использование нефтеносных областей, максимально полная разработка газа, нефти и конденсата. Организация данных процессов на любом объекте – приоритетное направление всей индустрии. Разработка нефтяных и газовых месторождений проводится с использованием традиционных скважин, иногда допускается шахтная добыча природных ископаемых. Примером последнего является Ярегская нефтяная залежь, которая находится в Республике Коми.

Чтобы более детально представить, как протекают процессы добычи углеводородов на промыслах, следует подробнее узнать о системе разработки нефтяных и газовых месторождений и основных этапах выкачивания ресурсов. Об этом и будет вестись речь ниже.

Что необходимо знать о системе разработки скважин?

Под понятием системы разработки пластов нефти и газа подразумевают определенную форму организации добычи природного ископаемого. Ее характер определяется следующим:

  • очередность введения в эксплуатацию технологических систем;
  • сетка размещения мест разбуривания на промыслах;
  • темпы внедрения в эксплуатацию систем выкачки газа и нефти;
  • способы поддержания баланса;
  • технологии применения пластовой энергии.

Что собой представляет сетка расположения скважин? Это определенный принцип размещения добывающих скважин и систем, подающих воду. Между ними должно выдерживаться определенное расстояние, которое называется плотностью сетки. Располагаются места для бурения равномерно или неравномерно, как правило, на нескольких линиях. Из рядов формируется квадратная, многоугольная либо треугольная система.

Важно! Проектирование сетки треугольной формы предполагает размещение на 15,5 % больше мест для бурения, нежели при прямоугольном расположении. И это при условии равного расстояния между скважинами.

Под плотностью следует понимать отношение общей площади месторождения к количеству скважин, работающих на добычу сырья. Но само понятие достаточно непростое, а плотность нередко определяется, исходя из конкретных условий на определенных месторождениях.

Также важно различать промыслы, где ведется использование отдельно расположенных залежей и областей, состоящих из нескольких пластов. Объектом эксплуатации называется 1 или же несколько продуктивных слоев одной нефтеносной области. Как правило, они отличаются геолого-техническими условиями и целесообразностью с точки зрения экономики. При эксплуатации промыслов необходимо учитывать следующее:

  • геолого-физические особенности области;
  • физико-химические характеристики природных ископаемых и водоносного слоя;
  • фазовое состояние сырья;
  • предположительную технологию добычи, наличие технического оснащения;
  • режим пластов природных ископаемых.

Объекты разделяются инженерами на самостоятельные и возвратные. Второй тип используется в качестве места для установки скважин для разбуривания других нефтяных и газовых месторождений.

Стадии разработки нефтяных и газовых месторождений

Стадия представляет собой период разработки, который обладает характерными только для него изменениями. При этом они всегда закономерны и касаются технологических и экономических показателей. Под этими понятиями скрываются среднегодовая и общая мощность промысла, текущее использование воды для заводнения, и количество воды в сырье. Кроме того существует так называемый водонефтяной фактор, который тоже следует брать во внимание. Он представляет собой частное от количества выкачанной воды и нефти.

Современное производство разделяет процесс добычи на 4 основных стадии:

  1. Первая стадия называется освоением месторождения. Для нее характерен интенсивный прирост темпов выкачки природного ресурса. За год прирост составляет примерно 1-2% от общих запасов сырья. В это же время проводится быстрое сооружение конструкций для добычи. Давление в залежи резко уменьшается, а обводненность продукции минимальна. При низкой вязкости сырья суммарная доля воды не превышает 4%, а при высокой – 35%.
  2. Второй этап – комплекс мероприятий, направленных на поддержание высокого уровня выкачки углеводородов. Для данной стадии характерна стабильно высокая добыча ресурса на протяжении до 7 лет. При высокой вязкости сырья период снижается до 2 лет. За счет резервного фонда в этот период наблюдается максимальный прирост скважин. Обводненость достигает 7% и 65% при низкой и высокой вязкости сырья. Проводится перевод большинства скважин на механизированную добычу.
  3. Третий этап считается наиболее сложным в процессе всей разработки. Основная цель промысла в это время – максимально снизить падение темпов добычи природного ископаемого. Наблюдается снижение ритма выкачивания ресурса, уменьшение числа работающих скважин. Обводненость составляет до 85%. Длительность третьего этапа – от 5 до 10 лет.
  4. Четвертая стадия – завершающая. Наблюдаются медленно снижающиеся темпы выкачки ресурса и большой забор жидкости. Резкое уменьшение количества работающих скважин обусловлено высокой степенью обводнения. Длительность этапа составляет порядка 15-20 лет. Срок определяется пределом экономической целесообразности эксплуатации месторождения.
  5. Сооружение эксплуатационных скважин и станций подачи воды

    Чтобы поддержать пластовое давление в области нефтегазоносности, необходимо использовать закачку жидкости в продуктивные залежи. В качестве альтернативы может применяться газ. Если же используется вода, то такой процесс называется заводнением. Различают законтурную, внутриконтурную технологии и способ заводнения по площади. Стоит рассмотреть каждый способ детально.

    1. Первый метод характеризуется нагнетанием воды из скважин, которые располагаются за областью нефтеносности. Сооружение установок проводится ровно по периметру залежи, формируя многогранник. А вот эксплуатационные нефтяные скважины размещаются внутри этого кольца. При заводнении таким способом количество выкачанной нефти равно объему закачанной в область нефтеносности воды.
    2. Если же проводится разработка крупных залежей, то следует использовать внутриконтурную технологию. Она подразумевает деление месторождения на области. Все они независимы друг от друга. При этом на единицу массы нефти приходится от 1,6 до 2 единиц объема закачанной воды.
    3. Площадный способ не используется в качестве основного заводнения. Это вторичная технология добычи ресурса. Используется, когда запасы пластовой энергии израсходованы в значительной мере, но при этом в недрах Земли еще есть большое скопление углеводородов. Подача воды проводится через гидравлическую систему. Скважины, нагнетающие жидкость, располагаются строго по сетке.

    Важно! Сейчас технология заводнения почти исчерпала себя. Для повышения эффективности добычи применяются другие способы разработки. Тем не менее, с его помощью удалось существенно повысить количество добытых ресурсов и объемы индустрии.

    На промыслах достаточно часто используются щелочные среды, горячая вода и пар, пена и эмульсии, полимеры. При добыче ресурсов из нефтяных и газовых месторождений также прибегают к применению углекислого газа, растворителей и других газов под давлением. Используется и так званый метод микробиологического воздействия на нефтеносную область.

    Сейчас разработка скважины на нефть проводится фонтанным, газлифтным и помповым методами.

Основные понятия и характеристики систем разработки

Под системой разработки месторождения понимается комплекс мероприятий по извлечению углеводородов из недр и уп­равлению этим процессом. Система разработки определяет количество эксплуатационных объектов, способы воздействия на плас­ты и темпы отбора углеводородов из них, размещение и плотность сетки добывающих и нагнетательных скважин, очередность ввода в разработку блоков и участков залежи, способы и режимы эксплуатации скважин, мероприятия по контролю и регулированию процесса разработки, охране недр и окружающей среды.

Системы разработки обосновываются в технологических про­ектных документах.

Под эксплуатационным объектом понимается про­дуктивный пласт, часть пласта или группа пластов, выделенных для разработки самостоятельной сеткой скважин. Пласты, объединяемые в один объект разработки, должны иметь близкие литологические характеристики и коллекторские свойства пород про­дуктивных пластов, физико-химические свойства и состав насы­щающих их флюидов, величины начальных приведенных пласто­вых давлений.

По признаку последовательности ввода отдельных объектов в эксплуатационное разбуривание могут быть выделены следующие системы разработки месторождений.

Система разработки «сверху вниз». Эта система заключается в том, что каждый пласт данного месторождения сначала вводится в разведку, а потом в эксплуатационное массовое разбуривание, но после того, как будет в основном разбурен вышележащий пласт (рис. 10).

Система разработки «сверху вниз» была органически связана с ударным бурением, при котором изоляция одного пласта от дру­гого в процессе бурения достигается не циркуляцией глинистого раствора, как при вращательном бурении, а путем спуска специ­альной колонны обсадных труб для изоляции каждого пласта. При технике ударного бурения эта система разработки была наиболее экономической и соответственно наиболее распростра­ненной. При современном состоянии науки и техники она не позволяет эффективно использовать имеющуюся технику бурения и данные электрометрических исследований скважин. Кроме того, она сильно задерживает темпы разработки и разведки место­рождений и в настоящее время не применяется.

Рис. 10. Схема разработки нефтяных месторождений.

а – по системе «сверху вниз», б – по системе «снизу вверх»

Система разработки «снизу вверх». Данная система заклю­чается в том, что в первую очередь разбуривается самый нижний из высокодебитных горизонтов (пластов). Горизонт, с которого начинается разработка, называется опорным (рис. 10).

Основные преимущества этой системы заключаются в следу­ющем:

1) одновременно с разведкой и разбуриванием опорного гори­зонта каротажем и отбором керна изучаются все вышележащие пласты, что намного сокращает число разведочных скважин, при этом освещается сразу строение всего месторождения;

2) уменьшается процент неудачных скважин, поскольку сква­жины, попавшие за контур залежи в опорном горизонте, могут быть возвращены эксплуатацией на вышележащие горизонты;

3) значительно возрастают темпы освоения нефтяных место­рождений;

4) сокращается число аварий при бурении, связанных с ухо­дом циркуляционного раствора в пласты - коллектора, а также значительно уменьшается глинизация пластов.

Система разработки этажами. Поэтажная система обычно применяется при разработке многопластовых месторождений, в разрезе которых имеются два-три и более выдержанных по простиранию и удаленных по разрезу продуктивных пласта.

По признаку последовательности разработки залежи рядами и ввода скважин в эксплуатацию системы разработки подразделя­ются на поэтапную и одновременную (сплошную).

При поэтапной системе разработки пласта сначала бурят два-три ряда скважин, ближайших к ряду нагнетательных скважин, оставляя при этом значительную часть пласта не разбуренной. Расчеты и опыт разработки месторождений подобным образом показывают, что бурение четвертого ряда скважин не повышает суммарного отбора нефти в силу интерференции скважин. Поэтому к бурению четвертого ряда приступают тогда, когда пер­вый ряд скважин обводнится и выйдет из эксплуатации. Пятый ряд бурят одновременно с выходом из эксплуатации второго ряда скважин и т. д.

Каждая замена внешнего ряда скважин внутренним называ­ется этапом разработки. Такая система разбуривания рядами в слу­чае разработки от контура к своду напоминает ползущую систему сплошного разбуривания по восстанию и отличается от нее тем, что в эксплуатации одновременно находятся не все скважины, а не более трех рядов.

При одновременной системе разработки залежь охва­тывается заводнением одновременно по всей площади.

Классификация разработки пластовых залежей по признаку воздействия, на пласт

Современному состоянию техники соответствует следующее деление методов разработки нефтяных залежей по признаку воз­действия на пласт:

1) метод разработки без поддержания пластового давления;

2) метод поддержания давления путем закачки воды;

3) метод поддержания давления путем закачки газа или воздуха;

4) вакуум-процесс;

5) компрессорно-циркуляционный метод разработки конденсатных месторождений;

6) метод внутрипластового горения;

7) метод циклической закачки пара.

Разработка без поддержания пластового давления применяется в тех случаях, когда давление краевых вод обеспечивает упруго-водо­напорный режим в залежи в течение всего времени эксплуатации или когда по тем или иным причинам экономически невыгодно организовывать закачку газа или воды в пласт.

В тех случаях, когда давление пластовых вод не может обес­печить упруго-водонапорного режима, разработка залежи без поддержания пластового давления обязательно приведет к проявлению режима растворенного газа, а стало быть к низкому коэффициенту использования запасов. В этих случаях необходимо искусственное поддержание пластового давления.

Если предполагается, что нефтяное месторождение будет разрабатываться в основной период при режиме растворенного газа, для которого характерно незначительное перемещение водонефтяного раздела, т. е. при слабой активности законтурных вод, то применяют равномерное, геометрически правильное расположение скважин по квадратной или треугольной сетке. В тех же случаях, когда предполагается определенное перемещение водонефтяного и газонефтяного разделов, скважины располагают с учетом положения этих разделов.

Метод поддержания давления путем закачки воды преследует цель поддерживать пластовое давление выше давления насыщения. Этим будет обеспечена разработка залежи при жестком водонапор­ном режиме. Последнее дает возможность разрабатывать залежь до извлечения 40 - 50% запасов преимущественно фонтанным способом с высокими темпами отбора жидкости и в конечном счете получать высокий коэффициент использования запасов – 60 - 70%.

Системы разработки с поддержанием пластового давления в свою очередь подразделяются на системы с законтурным, приконтурным и внутриконтурным воздействием.

Метод поддержания давления, при котором вода закачивается в законтурную область пласта, называется закон­турным заводнением. Законтурное заводнение рацио­нально применять при разработке относительно узких залежей (шириной не более 3-4 км), на которых размещается от трех до пяти рядов эксплуатационных скважин.

При разработке крупных залежей, когда закачка воды в за­контурную область не сможет обеспечить заданных темпов добычи и охватить влиянием скважины, расположенные внутри залежи, целесообразно применять внутриконтурное завод­нение. Раньше на заре развития методов поддержания давле­ния путем закачки воды применяли поэтапную систему разработки, которая представляла собою ползущую систему разработки по восстанию или по падению. В том и другом случае образовывалась законсервированная часть залежи, что крайне нежелательно. Поэтому при разработке крупных залежей в на­стоящее время применяют внутриконтурное заводнение .

Системы с внутриконтурным воздействием делятся на рядные, площадные, очаговые, избирательные, цетральные.

Внутриконтурное заводнение применяется такжепри разра­ботке литологических залежей , границы которых определяются замещением песчаников глинами. В этих случаях воду закачивают по оси залежи. Такое заводнение называется внутриконтурным по оси. Если же закачка производится в центре литологически ограниченной залежи через одну скважину, заводнение называ­ется очаговым. Практика показала эффективность такого заводнения литологических объектов, состоящих из большого числа линзообразных залежей.

С течением времени при очаговом заводнении соседние эксплуа­тационные скважины начинают обводняться, и после полного обводнения их переводят под нагнетание воды. Постепенно оча­говое заводнение превращается в центральное.

Центральным называется заводнение, которое производится через три-четыре скважины, расположенные в центре залежи.

Как правило, центральное заводнение через несколько скважин сразу в начале разработки на практике никогда не осуществляется.

В практике разработки крупных залежей применяются одно­временно законтурное, внутриконтурное по блокам и очаговое заводнения.

При разработке крупных залежей нефти платформенного типа в Западной Сибири применяют рядные системы разработки. Разновидность их - блоковые системы. При этих системах на месторождениях, обычно в направлении, поперечном их простиранию, располагают ряды добывающих и нагнетательных скважин. Практически применяют трехрядную и пятирядную схемы расположения скважин, представляющие собой соответственно чередование трех рядов добывающих и одного ряда нагнетательных скважин, пяти рядов добывающих и одного ряда нагнетательных скважин. При большем числе рядов (семь-девять) центральные ряды скважин не будут обеспечиваться воздействием от нагнетания вследствие их интерференции со скважинами крайних рядов.

Число рядов в рядных системах нечетное вследствие необходимости проводки центрального ряда скважин, к которому предполагается стягивать водонефтяной раздел при его перемещении в процессе разработки пласта. Поэтому центральный ряд скважин в этих системах часто называют стягивающим рядом.

Расстояние между рядами скважин обычно изменяется в пре­делах 400 - 600 м (реже до 800 м), между скважинами в рядах - в пределах 300 - 600 м.

При трехрядной системе за­лежь разрезается рядами нагнетательных скважин на ряд по­перечных полос шириною, равной четырехкратному расстоянию между рядами скважин. При пятирядной системе ширина полос равна шестикратному расстоянию между рядами. Эти системы разработки обеспечивают очень быстрое разбуривание залежей. При этих системах в начале разработки залежи не учитываются литологические особенности пласта.

Системы с площадным расположением скважин. Рас­смотрим наиболее часто используемые на практике системы разработки нефтяных месторождений с площадным расположе­нием скважин: пятиточечную, семиточечную и девятиточечную.

Пятиточечная обращенная система (рис. 11). Элемент системы представляет собой квадрат, в углах которого находятся добывающие, а в центре - нагнетательная скважина. Для этой си­стемы отношение нагнетательных и добывающих скважин со­ставляет 1/1.

Рис. 11. Расположение скважин при пятиточечной обращенной системе разработки

Семиточечная обращенная система (рис. 12). Элемент системы представляет собой шестиугольник с добывающими скважина­ми в углах и нагнетательной в центре. Добывающие сква­жины расположены в углах шестиугольника, а нагнетательная- в центре. Соотношение 1/2, т. е. на одну нагнетательную сква­жину приходятся две добывающие.

Рис. 12. Расположение скважин при семиточечной обращенной системе разработки

1 – условный контур нефтеносности, 2 и 3 – скважины соответственно нагентательные и добывающие

Девятиточечная обращенная система (рис. 13). Соотношение нагнетательных и добывающих скважин составляет 1/3.

Рис. 13. Расположение скважин при девятиточечной обращенной системе разработки

1 – условный контур нефтеносности, 2 и 3 – скважины соответственно нагентательные и добывающие

Самая интенсивная из рассмотренных систем с площадным расположением скважин пятиточечная, наименее интенсивная девятиточечная. Считается, что все площадные системы «жест­кие», поскольку при этом не допускается без нарушения гео­метрической упорядоченности расположения скважин и пото­ков движущихся в пласте веществ использование других нагне­тательных скважин для вытеснения нефти из данного элемента, если нагнетательную скважину, принадлежащую данному элементу, нельзя эксплуатировать по тем или иным причинам.

В самом деле, если, например, в блочных системах разработки (особенно в трехрядной и пятирядной) не может эксплуатиро­ваться какая-либо нагнетательная скважина, то ее может заме­нить соседняя в ряду. Если же вышла из строя или не прини­мает закачиваемый в пласт агент нагнетательная скважина одного из элементов системы с площадным расположением скважин, то необходимо либо бурить в некоторой точке эле­мента другую такую скважину (очаг), либо осуществлять про­цесс вытеснения нефти из пласта за счет более интенсивной за­качки рабочего агента в нагнетательные скважины соседних элементов. В этом случае упорядоченность потоков в элементах сильно нарушается.

В то же время при использовании системы с площадным рас­положением скважин по сравнению с рядной получают важное преимущество, состоящее в возможности более рассредоточенно­го воздействия на пласт. Это особенно существенно в процессе разработки сильно неоднородных по площади пластов. При ис­пользовании рядных систем для разработки сильно неоднород­ных пластов нагнетание воды или других агентов в пласт со­средоточено в отдельных рядах. В случае же систем с площад­ным расположением скважин нагнетательные скважины более рассредоточены по площади, что дает возможность подвергнуть отдельные участки пласта большему воздействию. В то же вре­мя, как уже отмечалось, рядные системы вследствие их боль­шой гибкости по сравнению с системами с площадным распо­ложением скважин имеют преимущество в повышении охвата пласта воздействием по вертикали. Таким образом, рядные си­стемы предпочтительны при разработке сильно неоднородных по вертикальному разрезу пластов.

В поздней стадии разработки пласт оказывается в значитель­ной своей части занятым вытесняющим нефть веществом (на­пример, водой). Однако вода, продвигаясь от нагнетательных скважин к добывающим, оставляет в пласте некоторые зоны с высокой нефтенасыщенностью, близкой к первоначальной нефтенасыщенности пласта, т. е. так называемые целики нефти. На рис. 14 показаны целики нефти в элементе пятиточечной систе­мы разработки. Для извлечения из них нефти в принципе мож­но пробурить скважины из числа резервных, в результате чего получают девятиточечную систему.

Помимо упомянутых известны следующие системы разработ­ки: система с батарейным (кольцевым) расположением скважин (рис. 15), которую можно использовать в редких случаях в залежах кру­говой формы в плане; система при барьерном заводнении, при­меняемом при разработке нефтегазовых залежей; смешанные системы-комбинация описанных систем разработки, иногда со специальным расположением скважин, используют их при раз­работке крупных нефтяных месторождений и месторождений со сложными геолого-физическими свойствами.

Рис. 14. Элемент пятиточечной системы, трансформируемый в элемент девятиточечной системы расположения скважин

1 – «четверть» основных добывающих скважин пятиточечного элемента (угловые скважины), 2 – целики нефти (застойные зоны), 3 – дополнительно пробуренные добывающие скважины (боковые скважины), 4 - заводненная область элемента, 5 - нагнетательная скважина

Рис. 15. Схема батарейного расположения скважин

1 – нагнетательные скважины, 2 – условный контур нефтеносности, 3 и 4 – добывающие скважины соответственно первой батареи радиусом R 1 и второй батареи радиусом R 2

Кроме того, используют избирательное системы воздействия, применяемые для регулирования разработки нефтяных мес­торождений с частичным изменением ранее существовавшей си­стемы.

В случае применения методов воздействия при разработке истощенных залежей их называют вторичными. Если они применяются с самого начала разработки залежи, их называют первичными. Вакуум-процесс является типичным вто­ричным способом и никогда не применяется с самого начала экс­плуатации.

Метод поддержания давления путем закачки газа обычно применяется в залежах, которые имеют газовую шапку. Поддержание давления путем закачки газа преследует цель под­держивать энергетические ресурсы пласта в процессе эксплуата­ции. Для этого с самого начала эксплуатации в сводовую часть структуры закачивают газ через нагнетательные сква­жины, расположенные вдоль длинной оси структуры. Кроме того, закачка газа иногда применяется при площадном вытеснении нефти газом (метод Мариэтта).

Термическое воздействие на пласт осуществляется путем закачки горячей воды в пласт через нагнетательные скважины. Закачка горячей воды применяется при заводнении пластов, содержащих сильно парафинистую нефть и имеющих температуру около 100° С. Закачка холодной, воды в такой пласт приводит к охлаждению пласта, к выпадению парафина, который закупо­ривает поры пласта.

В том случае, когда воздействие на пласт по средствам закачки воды осуществляется после разработки залежи при режиме рас­творенного газа, можно выде­лить два основных этапа: а) период безводной добычи, когда нагнетаемая вода идет на заполнение дренированных пустот, занятых газом низкого давления, и на заме­щение вытесняемой остаточной нефти; б) период прогрессиру­ющего обводнения эксплуатационных скважин.

К моменту прорыва воды в эксплуатационные скважины все поровое пространство в пласте будет занято жидкой фазой, по­этому дальнейший процесс заводнения будет установившимся: количество добываемой в сутки жидкости будет равно суточному объему закачиваемой воды.

Обобщение материалов, проведенное американскими исследо­вателями , показало, что коэффициент извлечения нефти при режиме растворенного газа в среднем составляет 20% от геологических запасов. Применение площадного заводнения на последней стадии разработки увеличивает его до 40%. В то же время применение заводнения в самом начале разработки увеличивает коэффициент извлечения от 60 до 85%. Согласно расчетам американских спе­циалистов, на месторождении Ист-Тексас ожидается конечная нефтеотдача порядка 80% от геологических запасов.

Можно указать еще четыре параметра, которыми характеризуют ту или иную систему разработки.

1. Параметр плотности сетки скважин S c , равный площади нефтеносности, приходящейся на одну скважину, независимо от того, является скважина добывающей или нагнетательной.
Если площадь нефтеносности месторождения равна S, а число скважин на месторождении n, то S c = S/n. Размерность - м 2 /скв. В ряде случаев используют параметр S сд, равный площади нефтеносности, приходящейся на одну добывающую скважину.

2. Параметр А.B. Крылова N кр, равный отношению извлекаемых запасов нефти N к общему числу скважин на месторождении N кр = N/n. Размерность параметра =т/скв.

3. Параметр , равный отношению числа нагнетательных скважин n н к числу добывающих скважин n д = n н /n д. Параметр - безразмерный. Параметр для трехрядной системы равен примерно 1/3, а для пятирядной ~1/5.

4. Параметр р, равный отношению числа резервных скважин, бурящихся дополнительно к основному фонду скважин на месторождении к общему числу скважин. Резервные скважины бурят с целью вовлечения в разработку частей пласта, не охваченных разработкой в результате выявившихся в процессе эксплуатационного его разбуривания не известных ранее особенностей геологического строения этого пласта, а также физических
свойств нефти и содержащих ее пород (литологической неоднородности, тектонических нарушений, неньютоновских свойств нефти и т. д.).

Если число скважин основного фонда на месторождении составляет n, а число резервных скважин n р, то р = n р /n. Параметр р - безразмерный.

Параметр плотности сетки скважин S с вообще говоря, может изменяться в очень широких пределах для систем разработки без воздействия на пласт. Так, при разработке месторождений сверхвязких нефтей (вязкостью в несколько тысяч 10 -3 Па*с) он может составлять 1 - 2*10 4 м 2 /скв. Нефтяные месторождения с низкопроницаемыми коллекторами (сотые доли мкм 2) разрабатывают при S c = 10 - 20*10 4 м 2 /скв. Конечно,
разработка как месторождений высоковязких нефтей, так и месторождений с низкопроницаемыми коллекторами при указанных значениях S c может быть экономически целесообразной при значительных толщинах пластов, т. е. при высоких значениях параметра А.И.Крылова или при небольших глубинах залегания разрабатываемых пластов, т.е. при небольшой стоимости скважин. Для разработки обычных коллекторов S c = 25 - 64*10 4 м 2 /скв.

При разработке месторождений с высокопродуктивными трещиноватыми коллекторами S c может быть равен 70 - 100*10 4 м 2 /скв и более. Параметр N кр также изменяется в довольно широких пределах. В некоторых случаях он может быть равен нескольким десяткам тысяч тонн нефти на скважину, в других - доходить до миллиона тонн нефти на скважину.

Для систем разработки нефтяных месторождений без воздействия на пласт параметр , естественно, равен нулю, а параметр р может составлять в принципе 0,1 - 0,2, хотя резервные скважины в основном предусматривают для системы с воздействием на нефтяные пласты.

Добыча нефти и газа ведется человечеством с древних времен. Сначала применялись примитивные способы: сбор нефти с поверхности водоемов, обработка песчаника или известняка, пропитанного нефтью, при помощи колодцев. Но началом развития нефтяной промышленности принято считать время появления механического бурения скважин на нефть и сейчас практически вся добываемая в мире нефть извлекается посредством буровых скважин. В настоящее время структура сырьевой базы такова, что крупные месторождения находятся на поздней стадии разработки и применение традиционных технологий по вовлечению невыработанных запасов может быть экономически нецелесообразным. Вследствие чего значительные объемы запасов окажутся не вовлеченными в промышленную разработку. Как известно, все вопросы разработки нефтяных залежей и эксплуатации скважин тесно связаны с режимом пласта и все происходящие в них процессы легко объяснимы.

Согласно существующим представлениям, режимом нефтяных залежей называется доминирующая сила пластовой энергии, проявляющаяся в процессе разработки. Все известные нам режимы (водонапорный, газонапорный, растворенного газа и гравитационный) характеризуются определенной закономерностью. Наиболее характерной является зависимость газового фактора (F) от коэффициента нефтеизвлечения (h), а также изменение диапазона компонентного состава газа нефтяных залежей. Режимы могут проявляться как в отдельности, так и в смешанном виде (в сочетании с другими режимами). Как показывает опыт разработки нефтяных месторождений, в залежах нефти, имеющих смешанный режим, изменение газового фактора происходит в соответствии с преобладающим режимом, проявляющимся в процессе разработки.

Режимы разработки залежей:

Упругий , при котором в качестве единственного источника энергии используется энергия упругого расширения воды, нефти и горных пород.

Водонапорный, при котором используется только энергия гидростатического напора краевых вод. Нефть из пласта к забоям скважин движется под действием напора краевой воды. При водонапорном режиме давление воды действует на нефть снизу.

Газонапорный, при котором используется энергия сжатого газа, заключенного в газовой шапке (режим газовой шапки). Нефть вытесняется к забоям скважин под давлением расширяющегося газа, находящегося в свободном состоянии. При газонапорном режиме газ создает давление на нефть сверху.

Режим растворенного газа, при котором основным источником энергии является энергия выделяющегося и расширяющегося газа. Режим растворенного газа проявляется, если напор краевых вод слабый или в залежи отсутствует свободный газ. Нефть продвигается к пласту под действием энергии расширяющегося газа.

Гравитационный режим - нефть из пласта продвигается к забою под действием гравитационных сил (сил тяжести). При гравитационном режиме отсутствует напор краевых вод, газовой шапки и газа, растворенного в нефти. Приток нефти к забоям скважин происходит за счет сил гравитации, проявляющихся в залежи. Такой режим характерен для поздних стадий разработки м/р.

На разрабатываемых залежах какой либо из указанных режимов разработки в чистом виде встречается редко. Обычно режимы сосуществуют в различных комбинациях.

Например: нефтяная залежь может одновременно разрабатываться под действием давления газа в газовой шапке и напора краевых вод. Режим растворенного газа может сочетаться с газонапорным или упругим:

Смешанный, режим, при котором проявляется одновременно несколько движущихся сил.

В результате эксплуатации скважин из недр извлекаются не все запасы содержащихся в залежах углеводородов.

Отношение извлеченного из залежи количества нефти или газа к их первоначальным (геологическим) запасам - называется коэффициентом нафтеотдачи (газоотдачи) пласта.

Значение этого коэффициента зависит в первую очередь от режима разработки.

При разработке нефтяных залежей наиболее эффективны упругий и водонапорный режимы, называемые режимом вытеснения нефти водой, т.к. вода имеющая большую вязкость, хорошо вытесняет нефть.

Коэффициент нефтеотдачи при газонапорном режиме и режиме растворенного газа наименьший, т.к. лишь часть энергии расширяющегося газа расходуется на вытеснение нефти. Большая часть непроизводительно проскальзывает по направлению к скважинам.

При гравитационном режиме с низким темпом отбора нефти можно получить высокий коэффициент нефтеотдачи, но увеличение длительности разработки залежи может оказаться экономически невыгодным.

Газоотдача выше нефтеотдачи пластов вследствие небольшой вязкости газов и слабого взаимодействия их с пористой средой горных пород. Наибольшую газоотдачу можно достигнуть снижением пластового давления до атмосферного. Поэтому разработку газовых залежей прекращают при давлении на устье скважин чуть больше атмосферного.

Режим эксплуатации залежи (м/р) можно искусственно изменить.

Например: закачка газа в ее наиболее высокую часть для создания газовой шапки - переводится с гравитационного или с режима растворенного газа на газонапорный; закачка воды в скважины, пробуренные вокруг залежи на продуктивный пласт - искусственно создается водонапорный режим разработки.

Совокупность мероприятий, при помощикоторых можно воздействовать на процесс разработки залежи и управлять этим процессом, называется системой разработки залежи.

На одной и той же залежи можно применять различные системы. Наиболее рациональной будет такая, которая обеспечивает выполнение намеченных планов добычи нефти и газа и достижение полного их извлечения из недр земли с минимальными затратами.

Система разработки залежи может изменяться по мере её выработки и получения дополнительной информации о свойствах и строении продуктивных пластов. Комплекс мероприятий, улучшающих систему разработки - называется регулированием системы разработки эксплуатируемой залежи (бурение новых скважин, изменение условий работы скважин - перевод с фонтанного способа эксплуатации на механизированный и др.)

Геометрически неправильные схемы расположения скважин получаются в результате различных мероприятий по регулированию (бурение новых скважин, выключение старых - нерентабельных и др.). Такие схемы размещения скважин используются при разработке газовых залежей.

Система размещения скважин при разработке газовых залежей мало влияет на газоотдачу пласта. Число же газовых скважин определяется потенциальными возможностями (т.е. предельно допустимым дебитом) каждой отдельно и общей потребностью в газе. Газовые скважины размещаются равномерно в наиболее высоких участках залежи.

В процессе разработки нефтяных залежей при естественных режимах происходит истощение пластовой энергии и падение пластовых давлений. При снижении пластового давления из нефти начинает выделяться газ и напорный режим работы залежи переходит в режим растворенного газа, а дебиты скважин уменьшаются. Дальнейшее истощение энергии выделяющегося из нефти газа приводит к проявлению гравитационного режима разработки и к необходимости использования дополнительных источников энергии для подъема нефти из скважины.

Таким образом, разработка нефтяных месторождений при естественных режимах не обеспечивает высоких темпов добычи нефти и высоких коэффициентов нефтеотдачи пласта: в недрах остаются огромные количества нефти, особенно при режиме растворенного газа. В результате разработка залежей может затянуться на многие годы, а затраты возрастут за счет использования дополнительных источников энергии. Для обеспечения высоких темпов отбора нефти из залежи и достижения коэффициентов нефтеотдачи необходимо в процессе разработки искусственно поддерживать пластовое давление путем закачки в залежь воды или газа (воздуха). Закачка воды в пласт - заводнение - самый распространенный в мире метод ППД. Свыше 90% всей нефти добывают из заводненных месторождений.

Педагогическая технология - Модульная" № уроков - модулей в теме - М 3 и М 4

Нефтяные и нефтегазовые месторождения - это скопления углеводородов в земной коре, приуроченные к одной или нескольким локализованным геологическим структурам, т.е. структурам, находящимся вблизи одного и того же географического пункта.

Залежью называется естественное локальное единичное скопление нефти в одном или нескольких сообщающихся между собой пластах-коллекторах, т. е. в горных породах, способных вмещать в себе и отдавать при разработке нефть.

Залежи углеводородов, входящие в месторождения, обычно находятся в пластах или массивах горных пород, имеющих различное распространение под землей, часто - различные геолого-физические свойства. Во многих случаях отдельные нефтегазоносные пласты разделены значительными толщами непроницаемых пород или находятся только на отдельных участках месторождения. Такие обособленные или отличающиеся по свойствам пласты разрабатывают различными группами скважин, иногда при этом используют различную технологию.

Места скопления природного газа в свободном состоянии в порах и трещинах горных пород называются газовыми залежами . Если газовая залежь является рентабельной для разработки, т.е. когда сумма затрат на добычу, транспорт и использование газа меньше полученного экономического эффекта от его применения, то она называется промышленной. Газовым месторождением обычно называют одну залежь или группу залежей, расположенных на одной территории.

Размер и многопластовость месторождений с емкостными свойствами коллекторов определяют в целом величину и плотность запасов нефти, а в сочетании с глубиной залегания oбycловливают выбор системы разработки и способов добычи нефти.

С и с т е м о й р а з р а б о т к и месторождения следует называть совокупность взаимосвязанных инженерных решений, определяющих объекты разработки; последовательность и темп их разбуривания и обустройства; наличие воздействия на пласты с целью извлечения из них нефти и газа; число, соотношение и расположение нагнетательных и добывающих скважин; число резервных скважин, управление разработкой месторождения, охрану недр и окружающей среды. Построить систему разработки месторождения означает найти и осуществить указанную выше совокупность инженерных решений.

Введем понятие объекта разработки месторождения.

О б ъ е к т р а з р а б о т к и - это искусственно выделенное в пределах разрабатываемого месторождения геологическое образование (пласт, массив, структура, совокупность пластов), содержащее промышленные запасы углеводородов, извлечение которых из недр осуществляется при помощи определенной группы скважин или других горнотехнических сооружений.

Разработчики, пользуясь распространенной у нефтяников терминологией, обычно считают, что каждый объект разрабатывается «своей сеткой скважин». Необходимо подчеркнуть, что сама природа не создает объекты разработки - их выделяют люди, разрабатывающие месторождение. В объект разработки может быть включен один, несколько или все пласты месторождения.

Основные особенности объекта разработки - наличие в нем промышленных запасов нефти и определенная, присущая данному объекту группа скважин, при помощи которых он разрабатывается.

Чтобы лучше усвоить понятие объекта разработки, рассмотрим пример. Пусть имеем месторождение, разрез которого показан на рис. 1. Это месторождение содержит три пласта, отличающиеся толщиной, областями распространения насыщающих их углеводородов и физическими свойствами. В таблице приведены основные свойства пластов 1, 2 и 3, залегающих в пределах месторождения.

Рис.1. Разрез многопластового нефтяного месторождения

Можно утверждать, что на рассматриваемом месторождении целесообразно выделить два объекта разработки, объединив пласты 1 и 2 в один объект разработки (объект А), а пласт 3 разрабатывать как отдельный объект (объект Б).

Включение пластов 1 и 2 в один объект обусловлено тем, что они имеют близкие значения проницаемости и вязкости нефти и находятся на небольшом расстоянии друг от друга по вертикали. К тому же извлекаемые запасы нефти в пласте 2 сравнительно невелики. Пласт 3 хотя и имеет меньшие по сравнению с пластом 1 извлекаемые запасы нефти, но содержит маловязкую нефть и высокопроницаемый. Следовательно, скважины, вскрывшие этот пласт, будут высокопродуктивными. Кроме того, если пласт 3, содержащий маловязкую нефть, можно разрабатывать с применением обычного заводнения, то при разработке пластов 1 и 2, характеризующихся высоковязкой нефтью, придется с начала разработки применять иную технологию, например вытеснение нефти паром, растворами полиакриламида (загустителя воды) или при помощи внутрипластового горения.

Вместе с тем следует учитывать, что, несмотря на существенное различие параметров пластов 1, 2 и 3, окончательное решение о выделении объектов разработки принимают на основе анализа технологических и технико-экономических показателей различных вариантов объединения пластов в объекты разработки.

Объекты разработки иногда подразделяют на следующие виды: самостоятельный, т. е. разрабатываемый в данное время, и возвратный, т. е. тот, который будет разрабатываться скважинами, эксплуатирующими в этот период другой объект.

Важная составная часть создания такой системы - выделение объектов разработки. Поэтому рассмотрим этот вопрос более подробно. Заранее можно сказать, что объединение в один объект как можно большего числа пластов на первый взгляд всегда представляется выгодным, поскольку при таком объединении потребуется меньше скважин для разработки месторождения в целом. Однако чрезмерное объединение пластов в один объект может привести к существенным потерям в нефтеотдаче и, в конечном счете, к ухудшению технико-экономических показателей. На выделение объектов разработки влияют следующие факторы.

1. Геолого-физические свойства пород-коллекторов нефти и газа. Резко отличающиеся по проницаемости, общей и эффективной толщине, а также неоднородности пласты во многих случаях нецелесообразно разрабатывать как один объект, поскольку они могут существенно отличаться по продуктивности, пластовому давлению в процессе их разработки и, следовательно, по способам эксплуатации скважин, скорости выработки запасов нефти и изменению обводненности продукции. Для различных по площадной неоднородности пластов могут быть эффективными различные сетки скважин, так что объединять такие пласты в один объект разработки оказывается нецелесообразным. В сильно неоднородных по вертикали пластах, имеющих отдельные низкопроницаемые пропластки, не сообщающиеся с высокопроницаемыми, бывает трудно обеспечить приемлемый охват горизонта воздействием по вертикали вследствие того, что в активную разработку включаются только высокопроницаемые пропластки, а низкопроницаемые прослои не подвергаются воздействию закачиваемого в пласт агента (воды, газа). С целью повышения охвата таких пластов разработкой их стремятся разделить на несколько объектов.

2. Физико-химические свойства нефти и газа. Большое значение при выделении объектов разработки имеют свойства нефтей. Пласты с существенно различной вязкостью нефти бывает нецелесообразно объединять в один объект, так как их необходимо разрабатывать с применением различной технологии извлечения нефти из недр с различными схемами расположения и плотностью сетки скважин. Резко различное содержание парафина, сероводорода, ценных углеводородных компонентов, промышленное содержание других полезных ископаемых также может стать причиной невозможности совместной разработки пластов как одного объекта вследствие необходимости использования различной технологии извлечения нефти и других полезных ископаемых из пластов.

3. Фазовое состояние углеводородов и режим пластов . Различные пласты, залегающие сравнительно недалеко друг от друга по вертикали и имеющие сходные геолого-физические свойства, в ряде случаев бывает нецелесообразно объединять в один объект в результате различного фазового состояния пластовых углеводородов и режима пластов. Так, если в одном пласте имеется значительная газовая шапка, а другой разрабатывается при естественном упруговодонапорном режиме, то объединение их в один объект может оказаться нецелесообразным, так как для их разработки потребуются различные схемы расположения и числа скважин, а также различная технология извлечения нефти и газа.

4. Условия управления процессом разработки нефтяных месторожде ний. Чем больше пластов и пропластков включено в один объект, тем технически и технологически труднее осуществлять контроль за перемещением разделов нефти и вытесняющего ее агента (водонефтяных и газонефтяных разделов) в отдельных пластах и пропластках, труднее осуществлять раздельное воздействие на пропластки и извлечение из них нефти и газа, труднее изменять скорости выработки пластов и пропластков. Ухудшение условий управления разработкой месторождения ведет к уменьшению нефтеотдачи.

5. Техника и технология эксплуатации скважин. Могут быть многочисленные технические и технологические причины, приводящие к целесообразности или нецелесообразности применения тех или иных вариантов выделения объектов. Например, если из скважин, эксплуатирующих какой-то пласт или группы пластов, выделенных в объекты разработки, предполагается отбирать настолько значительные дебиты жидкости, что они будут предельными для современных средств эксплуатации скважин. Поэтому дальнейшее укрупнение объектов окажется невозможным по технической причине.

В заключение следует еще раз подчеркнуть, что влияние каждого из перечисленных факторов на выбор объектов разработки должно быть сначала подвергнуто технологическому и технико-экономическому анализу, и только после него можно принимать решение о выделении объектов разработки.

Системы разработки залежей классифицируют в зависимости от размещения скважин и вида энергии, используемой для перемещения нефти.

Размещение скважин. Под размещением скважин понимают сетку размещения и расстояния между скважинами (плотность сетки), темп и порядок ввода скважин в работу. Системы разработки подразделяют на следующие: с размещением скважин по равномерной сетке и с размещением скважин по неравномерной сетке (преимущественно рядами).

Системы разработки с размещением скважин по равномерной сетке различают: по форме сетки; по плотности сетки; по темпу ввода скважин в работу; по порядку ввода скважин в работу относительно друг друга и структурных элементов залежи. Сетки по форме бывают квадратными и треугольными (шестиугольными). При треугольной сетке на площади размещается скважин больше на 15,5 %, чем при квадратной в случае одинаковых расстояний между скважинами.

Под плотностью сетки скважин подразумевают отношение площади нефтеносности к числу добывающих скважин. Вместе с тем это понятие очень сложное. Исследователи часто вкладывают разное содержание в понятие плотности сетки скважин: принимают только площадь разбуренной части залежи; число скважин ограничивают по разным величинам суммарной добычи нефти из них; включают или не включают нагнетательные скважины в расчет; в процессе разработки месторождения число скважин значительно изменяется, площадь нефтеносности при напорных режимах уменьшается, это по-разному учитывают и т. д. Иногда различают малую, среднюю и большую степени уплотнения скважин. Эти понятия весьма условны и различны для разных нефтепромысловых районов и периодов развития нефтяной промышленности. Проблема оптимальной плотности сетки скважин, обеспечивающей наиболее эффективную разработку месторождений, была самой острой на всех этапах развития нефтяной промышленности. Раньше плотность сетки скважин изменялась от 10 4 м 2 /скв (расстояние между скважинами 100 м) до (4-9)-10 4 м 2 /скв, а с конца 40-х - начала 50-х годов перешли к сеткам скважин с плотностью (30-60)10 4 м 2 /скв. Исходя из теории интерференции и упрощенной схематизации процесса вытеснения нефти водой из однородного пласта, считалось, что при разработке нефтяных месторождений при водонапорном режиме число скважин существенно не влияет на нефтеотдачу.

Практикой разработки и дальнейшими исследованиями установлено, что в реальных неоднородных пластах плотность сетки скважин оказывает существенное влияние на нефтеотдачу. Это влияние тем больше, чем более неоднородны и прерывисты продуктивные пласты, хуже литолого-физические свойства коллекторов, выше вязкость нефти в пластовых условиях, больше нефти первоначально заключено в водонефтяных и подгазовых зонах. Уплотнение сетки скважин в неоднородно-линзовидных пластах существенно увеличивает нефтеотдачу (охват разработкой), особенно при удачном размещении скважин относительно различных линз и экранов. Наибольшее влияние оказывает плотность сетки в диапазоне плотностей сетки более (25 - 30) 10 4 м 2 /скв. В диапазоне плотностей сетки менее (25- 30) 10 4 м 2 /скв влияние хотя и отмечается, однако оно не столь существенное, как при более редких сетках. В каждом конкретном случае выбор плотности сетки должен определяться с учетом конкретных условий.


Сейчас применяют двухстадийное разбуривание первоначально редких сеток скважин и последующее избирательное уплотнение их с целью повышения охвата неоднородных пластов заводнением, увеличения конечной нефтеотдачи и стабилизации добычи нефти. В первую стадию бурят так называемый основной фонд добывающих и нагнетательных скважин при малой плотности сетки. По данным бурения и исследования скважин основного фонда уточняется геологическое строение неоднородного объекта, в результате чего возможны изменения плотности сетки скважин, которые разбуривают во вторую стадию и называют резервными. Резервные скважины предусматриваются с целью вовлечения в разработку отдельных линз, зон выклинивания и застойных зон, которые не вовлекаются в разработку скважинами основного фонда в пределах контура их размещения. Число резервных скважин обосновывается с учетом характера и неоднородности пластов (их прерывистости), плотности сетки скважин, соотношения вязкости нефти и воды и т. д. Число резервных скважин может составлять до 30 % основного фонда скважин. Их место размещения следует планировать в более ранние сроки разработки. Отметим, что для замены фактически <* ликвидированных скважин из-за старения (физического износа) или по техническим причинам (в результате аварий при эксплуатации добывающих и нагнетательных скважин) требуется обосновывать также число скважин-дублеров, которое может достигать 10 - 20 % фонда.

По темпу ввода скважин в работу можно выделить одновременную (еще называют «сплошная») и замедленную систему разработки залежей. В первом случае темп ввода скважин в работу быстрый - все скважины вводят в работу почти одновременно в течение первых одного - трех лет разработки объекта. При большом сроке ввода систему называют замедленной, которую по порядку ввода скважин в работу различают на системы сгущающуюся и ползучую. Сгущающуюся систему целесообразно применять на объектах со сложным геологическим строением. Она соответствует принципу двухстадийного разбуривания. Ползучую систему, ориентированную по отношению к структуре пласта, подразделяют на системы: а) вниз по падению; б) вверх по восстанию; в) по простиранию. В практике разработки крупных отечественных месторождений ползучая и сгущающаяся системы разработки комплексно сочетают. Только трудные природные (топи, болота) и геологические условия определили применение ползучей системы на Самотлорском месторождении.

Системы разработки с размещением скважин по равномерной сетке считают целесообразными при режимах работы пласта с неподвижными контурами (режим растворенного газа,

гравитационный режим), т. е. при равномерном распределении по площади пластовой энергии.

Системы разработки с размещением скважин по неравномерной сетке аналогично различают: по плотности сетки; по темпу ввода скважин в работу (ввода рядов скважин - работают один ряд, два, три); по порядку ввода скважин в работу. Дополнительно их разделяют: по форме рядов - с незамкнутыми рядами и с замкнутыми (кольцевыми) рядами; по взаимному расположению рядов и скважин - с выдержанными расстояниями между рядами и между скважинами в рядах и с уплотнением центральной части площади.

Такие системы широко использовали при режимах работы пласта с подвижными контурами (водо-, газонапорный, напорно-гравитационный и смешанный режимы). При этом скважины размещали рядами, параллельными первоначальному контуру нефтеносности. При современном проектировании первоначальная расстановка скважин почти всегда равномерная.

Вид используемой энергии. В зависимости от вида энергии, используемой для перемещения нефти, различают: системы разработки нефтяных залежей при естественных режимах, когда используется только естественная пластовая энергия (без ППД); системы с поддержанием пластового давления, когда применяют методы регулирования баланса пластовой энергии путем искусственного ее пополнения.

По методам регулирования баланса пластовой энергии выделяют: системы разработки с искусственным заводнением пластов; системы разработки с закачкой газа в пласт.

Системы разработки с искусственным заводнением пластов могут осуществляться по следующим основным вариантам: законтурное, приконтурное, внутриконтурное, барьерное, блоковое, с подовое, очаговое, площадное заводнение.

Системы разработки с закачкой газа в пласт могут применяться но двум основным вариантам: закачка газа в повышенные части залежи (в газовую шапку), площадная закачка газа.