Внутренняя часть ядра. Температура внутри ядра земли оказалась выше, чем на солнце. Ядерный матрикс и ядерный сок

Внутри ядра

После того как Резерфорд «разглядел» в недрах атома его крошечное ядрышко, многим казалось, что наконец-таки наука достигла самого дна природы - глубже этого уже ничего нет. Но прошло всего каких-то двадцать лет и был открыт нейтрон - частица по всем своим свойствам такая же, как ядро атома водорода - протон, но только без электрического заряда. Нейтральный протон. Физикам открылась еще одна, теперь уже четвертая по счету, ступенька в глубинах микромира.

Назвать протоном ядро самого легкого и маленького по величине атома предложил все тот же Резерфорд. Этот термин он образовал от греческого слова «протос» - первый. Одновременно это напоминает протеин - простейший белок, основу, из которой построены клетки всех живых организмов. Резерфорд был уверен, что ядра тяжелых атомов тоже каким-то образом должны быть связаны с протоном. В имени его нейтрального собрата, нейтрона, отражено основное отличительное свойство этой частицы - отсутствие заряда. Она не отталкивается электрическим полем ядра и, как нож в теплое масло, проникает внутрь атомных ядер, разваливая их на части или образуя новые ядра. Нейтрон оказался чрезвычайно удобным «щупом» для зондирования внутренности ядер. После его открытия ядерная физика двинулась вперед семимильными шагами.

В известной сказке А. Толстого длинноносый Буратино и его друзья открыли волшебную дверь в каморке папы Карло маленьким золотым ключиком, который мудрая черепаха Тортила нашла в глубоком илистом пруду. Для физиков таким сказочным золотым ключиком стал нейтрон, с его помощью им удалось отомкнуть кладовую атомной энергии. Но это уже совсем другая история…

Вернемся, однако, к атомному ядру. Вскоре после открытия нейтрона два теоретика, немец Вернер Гейзенберг - тот самый, кто позднее руководил работами по созданию атомной бомбы в фашистской Германии, - и советский физик Дмитрий Дмитриевич Иваненко - ныне он профессор Московского университета - выдвинули гипотезу о том, что атомное ядро состоит из протонов и нейтронов. Согласно их теории, оно по внешнему виду напоминает плод граната с тесно прижавшимися друг к другу ягодками-частицами. В ядре водорода таких частиц всего одна - один-единственный протон, в ядрах тяжелых элементов - например, в свинце или уране - их уже более двух сотен. Опыты блестяще подтвердили эту теорию. Но оставалось загадкой, какие силы так крепко связывают в ядерные капли заряженные и нейтральные частицы.

Притяжение внутри ядра

Если при рассмотрении атомных ядер пренебречь гравитационными взаимодействиями и учитывать только электромагнитные, трудно объяснить существование ядра. Частицы, из которых оно состоит, не могли бы соединиться из-за колоссальных сил отталкивания между протонами; но даже если бы они каким-то образом все же соединились, они немедленно разлетелись бы, как при взрыве огромной силы. При этих условиях существовали бы только ядра водорода, состоящие из одного протона (или в некоторых случаях из протона и нейтрона).

И все же образовались, существуют и остаются стабильными все типы сложных ядер. Ядро урана-238 содержит 92 протона, находящихся в чрезвычайно тесном контакте друг с другом, тем не менее распадается оно чрезвычайно медленно, а ядро свинца с 82 протонами, так сказать, устойчиво, вечно.

Если факты противоречат теории, ее следует изменить. Если протоны связаны внутри ядра, должно быть притяжение, которое удерживает их вместе; притяжение, которое сильнее электромагнитного отталкивания. Следовательно, существуют ядерные взаимодействия, которые создают необходимое притяжение. Можно даже предсказать некоторые свойства ядерного взаимодействия. Во-первых, как отмечалось, оно должно быть сильнее электромагнитного и должно создавать притяжение между двумя протонами (а также между протоном и нейтроном и между двумя нейтронами). Во-вторых, ядерное взаимодействие должно действовать только на очень коротких расстояниях.

Электромагнитное и гравитационное взаимодействие обнаруживаются на значительном расстоянии. Каждая единица электрического заряда является как бы центров электромагнитного поля, которое простирается во всем направлениях и постепенно уменьшается с расстоянием. Аналогично каждая единица массы является центром гравитационного поля.

Напряженность каждого из этих полей обратно пропорциональна квадрату расстояния между взаимодействующими телами. Если, например, расстояние между протонами увеличится в два раза, гравитационное притяжение и электромагнитное отталкивание уменьшатся в четыре раза. Несмотря на такое ослабление, оба поля действуют на больших расстояниях. Например, Земля находится под действием гравитации Солнца, несмотря на то что их разделяет расстояние в 150 000 000 км. Значительно более удаленная планета Плутон также удерживается Солнцем, а Солнце, в свою очередь, удерживается на огромной орбите вокруг центра Галактики. Следовательно, электромагнитное и гравитационное поля вполне можно назвать «дальнодействующими».

Ядерные взаимодействия, рождающиеся в ядерном поле, изменяются однако не обратно пропорционально квадрату расстояния. Под действием ядерного поля два протона притягиваются друг к другу с большой силой, пока фактически не соприкоснутся. Но на расстояниях, превышающих размеры атомного ядра, притяжение, вызванное ядерным полем, слабее отталкивания за счет электромагнитного поля; поэтому везде, за исключением внутренних областей ядра, два протона отталкиваются.

Действительно, если атомное ядро имеет необыкновенно большие размеры, ядерное притяжение не в состоянии скомпенсировать электромагнитное отталкивание между протонами по всему объему ядра, и оно стремится развалиться. Именно такие ядра со сложной структурой испытывают?-распад, а иногда подвергаются даже более радикальному распаду, который мы называем «делением». Ядерное поле убывает обратно пропорционально не квадрату, а приблизительно седьмой степени расстояния. Если расстояние между двумя протонами увеличивается вдвое, притяжение между ними уменьшается не в 4 раза, а в 128 раз. Это означает, что поле внутри ядра в сотни раз сильнее электромагнитного, а вне ядра им можно пренебречь.

В 1932 году Гейзенберг (впервые предложивший протон-нейтронную модель ядра) разработал теорию, согласно которой взаимодействия полей осуществляются посредством обмена частицами. Например, притяжение и отталкивание в электромагнитном поле происходят в результате обмена фотонами между телами, испытывающими притяжение или отталкивание, иначе говоря, с помощью так называемых обменных сил. Если соображения Гейзенберга применимы и к ядерному полю, протоны и нейтроны ядра должны обмениваться некоторой частицей, чтобы между ними возникло необходимое притяжение, удерживающее их вместе.

Что это за частица? Почему она создает короткодействующую силу? И снова ответ (как и многие другие ответы в ядерной физике) возник при рассмотрении законов сохранения, но с совершенно новой точки зрения.

Из книги Приключения Мистера Томпкинса автора Гамов Георгий

Глава 12 Внутри ядра Следующая лекция, которую посетил мистер Томпкинс, была посвящена внутреннему строению ядра как центра, вокруг которого вращаются атомные электроны.- Леди и джентльмены, - начал профессор. - Все более углубляясь в строение материи, мы попытаемся

Из книги [лекция для школьников] автора Иванов Игорь Пьерович

Удивительный мир внутри атомного ядра

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Удивительный мир внутри атомного ядра

Из книги Межпланетные путешествия [Полёты в мировое пространство и достижение небесных тел] автора Перельман Яков Исидорович

Отталкивание внутри ядра К 1932 году стало ясно, что ядра состоят исключительно из протонов и нейтронов. От более ранних теорий, которые утверждали, что в ядре находятся электроны, отказались. Хотя это решило сразу много проблем, возник вопрос, которого не было раньше.До сих

Из книги E=mc2 [Биография самого знаменитого уравнения мира] автора Боданис Дэвид

Притяжение двоих людей Как же велика эта сила взаимного притяжения тел? Она может быть и невообразимо ничтожна и чудовищно могущественна, - в зависимости от размеров притягивающихся масс и от их взаимного расстояния. Два взрослых человека, отстоящие на сажень один от

Из книги Эволюция физики автора Эйнштейн Альберт

Притяжение двух кораблей Всемирное притяжение Закон масс - притяжение пропорционально произведению притягивающихся масс. 1 единица массы притягивает 1 единицу с силою 1 ед. 2 единицы массы притягивают 1 единицу с силою 2 ед. 3 единицы массы притягивают 2 единицы с силою 6

Из книги Для юных физиков [Опыты и развлечения] автора Перельман Яков Исидорович

Притяжение двух миров Зато для таких огромных масс, как целые солнца и планеты, взаимное притяжение даже на гигантских расстояниях достигает степеней, превосходящих человеческое воображение. Всемирное притяжение Закон расстояний - притяжение убывает пропорционально

Из книги Твиты о вселенной автора Чаун Маркус

Внутри ядра Это небывалое путешествие пройдет для пассажиров Жюль-Вернова ядра далеко не так мирно и благополучно, как описано в романе. Не думайте, однако, что опасность грозит им во время путешествия от Земли до Луны. Ничуть! Если бы им удалось остаться живыми к моменту,

Из книги Вечное движение. История одной навязчивой идеи автора Орд-Хьюм Артур

К главе VIII 6. Давление внутри пушечного ядра Для читателей, которые пожелали бы проверить расчеты, упомянутые на стр. 65-й, приводим здесь эти несложные вычисления.Для расчетов нам придется пользоваться лишь двумя формулами ускоренного движения, именно:1) Скорость v в конце

Из книги Черные дыры и складки времени [Дерзкое наследие Эйнштейна] автора Торн Кип Стивен

Глава 8. Внутри атома Университетских студентов 1900 года учили тому, что обычное вещество - то, из которого состоят кирпичи, сталь, уран и все прочее, - и само состоит из мельчайших частиц, именуемых атомами. Однако, из чего состоят атомы, этого не знал никто. Общее мнение

Из книги автора

Вне и внутри лифта Закон инерции является первым большим успехом в физике, фактически ее действительным началом. Он был обнаружен при размышлении над идеализированным экспериментом, над телом, постоянно движущимся без трения и без воздействия каких-либо других внешних

Из книги автора

33. Притяжение жидкостей Притягиваются к наэлектризованным вещам не только твердые предметы, но и жидкости. Нет ничего легче, как обнаружить электрическое притяжение, например, водяной струи: гребень, проведенный по волосам, приблизьте к тонкой струе воды, вытекающей из

Из книги автора

17. Почему Земля внутри расплавлена? Это не так. По крайней мере, не в самом центре планеты. Земля имеет твердое внутреннее ядро и жидкое внешнее ядро. Оба состоят из железа и никеля.В обычных условиях железо плавится при 1536 °C. Но температура плавления материала растет с

Из книги автора

37. Что там, внутри Солнца? Солнце - огромный шар из газа, имеющий 1,4 млн км в поперечнике. В основном оно состоит из водорода (75 %) и гелия (24 %).К центру плотность и температура значительно увеличиваются.Солнце не имеет нейтральных атомов. Атомные ядра (положительный заряд)

Из книги автора

Из книги автора

13 ВНУТРИ ЧЕРНЫХ ДЫР глава, в которой физики борются с уравнением Эйнштейна и пытаются понять, что скрыто внутри черных дыр: путь в другую Вселенную? Сингулярность с бесконечными приливными гравитационными силами? Конец пространства и времени и рождение квантовой

Предполагать, что внутри Земли находится твердое и горячее ядро, ученые начали очень давно, выдвигая различные гипотезы происхождения планеты. Однако лишь недавно исследователи сумели точно установить, что ядро неоднородно, внешняя часть его имеет жидкую структуру, а под ней располагается твердое вещество. Радиус по самым приблизительным подсчетам составляет 1300 км.

Из чего состоит твердая часть ядра?

На этот вопрос наука может отвечать только гипотезами и предположениями, так как современная техника не позволяет взять непосредственные пробы. Впервые существование внутреннего ядра доказала Инге Леманн, геофизик из Дании, путем анализа сейсмических волн и других геологических процессов. Предполагается, что оно постепенно кристаллизуется и увеличивается за счет остывающего вещества наружного слоя, однако скорость этого увеличения не превышает 1 мм в год.

О составе ядра можно судить на основе изучения метеоритов, так как эти космические тела представляют собой фрагменты ядер астероидов или других планет. Метеориты в основном состоят из сплавов железа и никеля, поэтому большинство ученых считает, что именно эти элементы лежат в основе твердого ядра. Однако космические объекты являются осколками небесных тел меньших по размеру, чем наша планета. Это значит, что химический состав может отличаться.

Менее распространенная точка зрения говорит о том, что ядро не имеет кристаллической структуры, а находится в аморфном состоянии. Его твердость в этом случае обусловлена очень высоким давлением, ведь плотность вещества внутри ядра, по подсчетам, составляет около 13,1 г/см3. Часть ученых говорит о том, что в составе ядра большое место занимают азот и сера. Единой точки зрения по этому вопросу, скорее всего, не появится еще очень долго.

Физические свойства внутреннего ядра

Компьютерные модели и лабораторные эксперименты позволили ученым представить, что происходит в самом центре нашей планеты, и объяснить некоторые загадки, например, феномен возникновения магнитного поля. Сейчас доказано, что внешнее и внутреннее ядро вращаются, причем в противоположные стороны. Скорость этого вращения постепенно меняется вместе с направлением, так что, возможно, через несколько тысячелетий северный и южный полюс могут поменяться местами.

Температура внутреннего ядра приближается к температуре поверхности Солнца и составляет около 6000 градусов по Цельсию. При кристаллизации тепло выделяется во внешние оболочки, обеспечивая геодинамику. Сейсмическое зондирование позволило установить, что скорость тектонических волн может отличаться, что приводит к изменениям всех слоев Земли. Знания об устройстве ядра необходимы не только геофизикам, но и сейсмологам, чтобы появилась возможность точно предугадывать, а то и предотвращать землетрясения.

Внутреннее ядро земли ждет новых открытий и экспериментов, которые позволят точно установить его состав и спрогнозировать будущее нашей планеты.

Мощностью около 2200 км, между которыми иногда выделяется переходная зона. Масса ядра - 1,932 10 24 кг.

Известно о ядре очень мало - вся информация получена косвенными геофизическими или геохимическими методами, и образы вещества ядра не доступны, и вряд ли будут получены в обозримом будущем. Однако фантасты уже несколько раз в подробностях описали путешествия к ядру Земли и несметные богатства там таящиеся. Надежда на сокровища ядра имеет под собой некоторые основания, так как согласно современным геохимическим моделям в ядре относительно велико содержание благородных металлов и других ценных элементов.

История изучения

Вероятно одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность характерная для пород выходящих на земную поверхность.

Существование было доказано в 1897 немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 американским геофизиком Б. Гутенбергом.

Аналогичные расчеты можно сделать для металлических метеоритов, которые являются фрагментами ядер мелких планетарных тел. Оказалось, что в них формирования ядра происходило значительно быстрее, за время порядка нескольких миллионов лет.

Теория Сорохтина и Ушакова

Описанная модель не является единственной. Так по модели Сорохтина и Ушакова, изложенной в книге "Развитие Земли" процесс формирования земного ядра растянулся приблизительно на 1,6 млрд лет (от 4 до 2,6 млрд лет назад). По мнению авторов образование ядра происходило в два этапа. Сначала планеты была холодной, и в её глубинах не происходило никаких движений. Затем она прогрелось радиоактивным распадом достаточно для того, чтобы начало плавиться металлическое железо. Оно стало стекаться к центру земли, при этом за счет гравитационной дифференциации выделялось большое количество тепла, и процесс отделения ядра только ускорялся. Этот процесс шел только до некоторой глубины, ниже которой вещество было такое вязкое, что железо погружаться уже не могло. В результате образовался плотный (тяжелый) кольцевой слой расплавленного железа и его окиси. Он располагался над более легким веществом первозданной “сердцевины” Земли.

19632 0

Используя тонкое сочетание ускорителей частиц, рентгеновских лучей, высокоинтенсивных лазеров, алмазов и атомов железа, учёные сумели вычислить температуру внутреннего ядра нашей планеты.

Согласно новым подсчётам, она составляет 6000 градусов по Цельсию, что на тысячу градусов выше, чем считалось ранее.

Таким образом, ядро планеты Земля имеет более высокую температуру, чем поверхность Солнца.

Новые данные могут повлечь за собой переосмысление считавшимися непреложными фактов в таких областях знания, как геофизика, сейсмология, геодинамика и других ориентированных на изучение планеты дисциплинах.

Если смотреть с поверхности вглубь, Земля состоит из коры, твёрдой верхней мантии, далее по большей части твёрдой мантии, внешнего ядра из расплавленного железа и никеля и внутреннего ядра из твёрдого железа и никеля. Внешнее ядро находится в жидком состоянии по причине высоких температур, но более высокое давление во внутреннем ядре препятствует расплавлению породы.

Расстояние от поверхности до центра Земли составляет 6371 км. Толщина коры равняется 35 км, мантии 2855 км; на фоне таких расстояний Кольская сверхглубокая скважина глубиной 12 км выглядит сущим пустяком. По существу, о том, что происходит под корой, достоверно нам ничего не известно. Все наши данные основаны на сейсмических волнах землетрясений, отражающихся от различных слоёв Земли, и жалких крох, попадающих на поверхность из глубины, как вулканическая магма.

Естественно, учёные с превеликим удовольствием пробурили бы скважину до самого ядра, но с нынешним уровнем развития технологий осуществление этой задачи не представляется возможным. Уже на двенадцати километрах бурение Кольской скважины пришлось прекратить, так как температура на такой глубине составляет 180 градусов.

На пятнадцати километрах температура прогнозируется на уровне в 300 градусов, и при ней современные буровые установки работать не смогут. И уж тем более сейчас и близко нет технологий, которые дали бы возможность вести бурение в мантии, в диапазоне температур 500-4000 градусов. Не стоит забывать и о практичной стороне дела: за пределами коры нет нефти, так что инвестировать в попытку создания подобных технологий желающих может и не найтись.

Чтобы вычислить температуру во внутреннем ядре, французские исследователи сделали всё возможное для воссоздания сверхвысоких температур и давления ядра в лабораторных условиях. Имитация давления является самой сложной задачей: на такой глубине оно достигает значения 330 гигапаскалей, что в три миллиона раз превышает атмосферное давление.

Чтобы решить её, использовалась ячейка с алмазными наковальнями. Она представляет собой два алмаза конической формы, которые воздействуют на материал с двух сторон на площади диаметром менее миллиметра; таким образом, на образец железа оказывалось давление в 200 гигапаскалей. Затем железо нагревалось при помощи лазера, подвергалось дифракционному анализу рентгеновскими лучами для наблюдения перехода от твёрдого к жидкому состоянию при таких кондициях. Наконец, учёные внесли поправки в полученные результаты для давления в 330 гигапаскалей, получив температуру покрытия внутреннего ядра 5957 плюс-минус 500 градусов. Внутри самого ядра она, по всей видимости, ещё выше.

Почему же переосмысление температуры ядра планеты имеет большое значение?

Магнитное поле Земли генерируется именно ядром и влияет на множество событий, происходящих на поверхности планеты - например, удерживает атмосферу на месте. Знание, что температура ядра на тысячу градусов выше, чем считалось ранее, пока не даёт никаких практических областей применения, но может пригодиться в будущем. Новое значение температуры будет использоваться в новых сейсмологических и геофизических моделях, которые в будущем вполне могут привести к серьезным научным открытиям. По большому же счёту, более полная и точная картина окружающего мира ценна для учёных сама по себе.

Константин Моканов