Первое на что обращаем внимание, это на практичность - баланс между. Способы утилизации взрывчатых веществ Механизация зарядки скважин эмульсионными ВВ

АО «ГосНИИ«Кристалл» - ведущая организация России в области разработки и освоения производства новых видов промышленных взрывчатых веществ для горных взрывных работ.

Со времени основания в 1953 году исследования новых взрывчатых веществ и технологических процессов их производства были одним из важнейших звеньев работы института. В 80-е годы ОАО «ГосНИИ«Кристалл» возглавил и развернул исследования по отечественным ЭВВ, которые пришли на замену гранулотолу и другим тротилсодержащим материалам.

В настоящее время в России по технологии АО «ГосНИИ «Кристалл» эксплуатируется четырнадцать промышленных производств ЭВВ, на которых производится более 250 000 т/год ЭВВ (около 15% всего объема потребления ПВВ в России). Запущено производство ЭВВ на Украине, Таджикистане и планируются к созданию производства ЭВВ в Казахстане и Вьетнаме.

Технология и установка получения ЭВВ получила золотую медаль ВДНХ (1989), дипломы международных выставок IV форума «Высокие технологии 21 века» (Россия, 2003) и г. Ганновер (Германия, 2005). Лауреат конкурса «100 лучших товаров России» (2006).

АО «ГосНИИ«Кристалл» предлагает к поставке:

Базовая технологическая линия включает оборудование для осуществления приема, подготовки и переработки исходных компонентов в полуфабрикаты и загрузки их в смесительно-зарядную машину (СЗМ).

Оборудование предлагаемой установки размещается в стационарном варианте. Получения игданита производится в шнековом смесителе. Дизельное топливо дозировано подаются в смеситель. Топливо - плунжерным насосом-дозатором распыляется в смесителе через форсунку, расположенную непосредственно после приемного бункера селитры аммиачной.

Модульная установка представляет собой комплекс технологических аппаратов, объединенных в технологическую линию. Оборудования модуля заключено в каркас стандартного 40 футового контейнера, что обеспечивает удобство транспортировки, быстроту монтажа и демонтажа, сохранность оборудования.

Стационарные пункты подготовки и приготовления ВВ или их компонентов подразделяются на следующие пункты:

приготовления бестротиловых простейших ВВ (игданитов) из невзрывчатых компонентов;

растаривания промышленных ВВ и снаряжения зарядных машин;

приготовления горячего насыщенного раствора селитр со ста­билизирующими добавками для приготовления на взрываемом блоке водосодержащих ВВ;

приготовления обратных эмульсий из раствора селитр с эмуль­гаторами для приготовления на взрываемом блоке эмульсионных ВВ.

Ниже рассмотрены схемы и технология работ на перечислен­ных пунктах подготовки и приготовления компонентов ВВ.

Пункты для приготовления игданитов. На крупных карьерах или на участке специализированной организации, ведущей взрыв­ные работы на группе карьеров (по типу объединения Северо-Во­сток золото), с большим объемом потребления игданита могут создаваться специализированные стационарные пункты его при­готовления. Оборудование пунктов должно обеспечивать высокопроизводительное

и безопасное выполнение следующих опе­раций: приемка аммиачной селитры и размещение ее в хранилище; хранение селитры в режиме, исключающем ее излишнее увлаж­нение и слеживание; подача селитры в узел приготовления игданита; приготовление игданита и дозированная погрузка получен­ного ВВ в зарядные машины.

В настоящее время основным типом ВВ, используемым для разработки россыпей Северо-востока СССР, является игданит, доля которого превысила 60 % общего объема потребления ВВ в этом регионе.

Созданный ВНИИ-1 комплекс «Берелех» позволил механизи­ровать приготовление игданита в объединении Северо-восток-золото на 100 % и в объединении Якутзолото на 60 %. В настоя­щее время в промышленной эксплуатации находятся 35 комплек­сов «Берелех». Одновременно была создана технология бестарного хранения аммиачной селитры (АС) в буртах вместимостью 600 т. Исследования, проведенные ВНИИ-1 и ИПКОН АН СССР по оценке пригодности для изготовления игданита аммиачной селитры десяти различных заводов-изготовителей, показали, что АС, не подвергнутая специальной обработке, способна удержи­вать лишь 3-4 % дизельного топлива (ДТ). Низкая стабильность игданита сокращает допустимое время нахождения зарядов в сква­жинах, что ограничивает объемы массовых взрывов, увеличивает их количество и приводит к неоправданным издержкам от про­стоев буровых станков, землеройной техники, а в целом к сниже­нию технико-экономических показателей взрывных работ.

Перспективны два метода повышения стабильности игданита: введение в дизельное топливо поверхностно-активных веществ (ПАВ) и введение в состав игданита на стадии смешивания его компонентов дисперсных горючих добавок.

Наилучшие результаты получены при использовании смеси, состоящей из неионогенных и катионного ПАВ. Добавка этой композиции в сочетании с сорастворителем ПАВ к ДТ обеспечи­вает стабильность игданита при температуре от -5 до -45 °С в течение 72 ч.

Схема дозирования жидкого горючего компонента при изго­товлении игданита на установке ИСИ-2 показана на рис. 13.9. На нагнетательной ветви магистрали жидкого горючего компо­нента от шестеренчатого насоса устанавливаются регулятор рас­хода (дроссель) жидкого компонента 3 и обратный клапан 2. Для осуществления контроля за расходом жидкого горючего ком­понента в системе его подачи предусматривается установка двух дозаторов 8, оборудованных соответствующей запорной армату­рой. Из накопительной емкости 1 жидкий компонент самотеком поступает через входные клапаны 9 в дозаторы 8, после чего входные краны устанавливают в закрытое положение. Подача жидкого компонента в смесительный шнек ИСИ-2 через распыли­тельную форсунку 5 осуществляется установкой одного из кранов

Рис. 13.9. Схема дозирования подачи жидкой горючей добав­ки для приготовления игданита на установке ИСИ-2

дозатора 7 в открытое положение с последую­щим включением насоса 6. Расход жидкого горючего компонента устанавлива­ется с помощью дросселя 4, при этом избыточное количество его возвращается через обратный клапан в ра­ботающий дозатор. Непрерывное дозирование обеспечивается попеременной работой дозаторов посредством переключения од­ного дозатора на другой после опорожнения работающего дозатора. Благодаря тому, что вместимость каждого дозатора рассчитана на вместимость бункера-накопителя готового игданита, создается возможность постоянного контроля за соблюдением соотношения смешиваемых компонентов, и по мере необходимости осуществляется корректировка в подаче жидкого горючего компонента. Введение добавок композиции ПАВ и сорастворителя при изготовлении стабильного игда­нита осуществляется в накопительную емкость с ДТ. В на­стоящее время во ВНИИ-1 разработана и прошла про­мышленные испытания на предприятиях технология изготовле­ния трехкомпонентного игданита, обладающего одновременно улучшенной стабильностью и повышенной энергией взрыва. Для изготовления этого игданита был применен разработанный ВНИИ-1 комплекс оборудования ИСИ-2 производительностью 20 т ВВ в час.

Разработан новый способ получения алюминизированных ВВ методом холодного смешивания компонентов в условиях горных предприятий.

Дисперсный горючий компонент равномерно распределяется в жидкой добавке до образования однородной суспензии, после чего этой суспензией обрабатываются гранулы аммиачной се­литры, при этом поверхностный контакт между дисперсным ком­понентом и гранулами АС усиливается наличием в составе ВВ добавок ПАВ. Применение этой технологии для приготовления многокомпонентных составов позволяет исключить расслоение взрывчатой смеси в процессе ее приготовления, транспортирова­ния и заряжания. В основу устройства для приготовления су­спензий был положен принцип работы струйного аппарата в ре­жиме жидкость-воздух по замкнутой гидравлической схеме (рис. 13.10). При этом в качестве рабочей жидкости использова­лась жидкая горючая добавка, циркулирующая между насосом 1 и баком 2 по кольцевому трубопроводу. Загрузка дисперсного

Рис. 13.10. Схема смешивания жидкой горючей добавки с алюминиевой пудрой

компонента 3 (порошок алюминия) в смесительный бак устрой­ства производилась из поставляемой тары- стальных барабанов по гибкому шлангу под действием разряжения, создаваемого струей рабочей жидкости в смесительной камере гидроэлеватора. Устройство для приготовления суспензий, получившее название гидровакуумный смеситель, вошло в состав установки ИСИ-2 для изготовления трехкомпонентных игданитов с повышенной энергией взрыва. Селитра подается в емкость 4 и смешивается с суспензией в наклонном шнеке 5 (см. рис. 13.9).

Пункты для механизированного растаривания и загрузки ВВ в зарядные машины должны обеспечивать выполнение следующих операций: прием ВВ в мешках или мягких контейнерах, растаривание мешков или контейнеров в накопительный бункер для снаря­жения зарядных машин, сбор использованной тары. Такой пункт растаривания показан на рис. 13.11.

Доставка ВВ на пункт предусматривается на поддонах акку­муляторным погрузчиком ЭШ-181 грузоподъемностью 1000 кг, автомашинами или железнодорожными вагонами.

Погрузчик опускает мешки с ВВ на площадку у концевой части наклонного ленточного конвейера. Отсюда мешки поступают на ленту, поднимаются на верхнюю площадку и при сходе с кон­вейера захватываются растаривающей вибрационной установкой УРВ-2, в которой разрезаются бумажные мешки, происходит частичное измельчение слежавшегося ВВ, а неразрушившиеся куски ВВ поступают в валковую дробилку. Из-под сита и от дробилки измельченное ВВ поступает в бункер-накопитель. Бу­мажная упаковка по лотку направляется в сборную емкость. Выпускные отверстия бункера оборудованы затворами-дозаторами, из которых ВВ поступает в емкости зарядных машин.

Рис. 13.11. Схема стационарного механизированного пункта подготовки (при­готовления) ВВ:

1 - наклонная галерея с конвейером; 2 - здание растеривающей установки; 3 - бун­кер-накопитель; 4 - лоток для выпуска мешкотары; 5 - зарядная машина

С пункта до места взрывов ВВ доставляется в транспортно-зарядных автомашинах. Такой пункт целесообразно оборудовать двумя бункерами, в один из которых загружается гранулотол, а во второй - гранулированная аммиачная селитра. Для за­правки зарядных машин имеется емкость с соляровым маслом.

Целесообразно бункеры двухбункерных зарядных машин сна­ряжать игданитом и гранулотолом и использовать каждое ВВ раздельно для заряжания нижней (обводненной) и верхней (су­хой) частей скважин.

В организациях Кривбассвзрывпром и Кмавзрывпром при­меняются передвижные растаривающие установки, смонтирован­ные на автомашине, которой можно растаривать мешки непосред­ственно из железнодорожных вагонов и снаряжать зарядные машины вблизи места взрыва в любом месте карьера (рис. 13.12).

Применение передвижных растаривающих установок типа МПР-30 делает ненужным сооружение стационарного растаривающего пункта, что обеспечивает снижение затрат на растаривание ВВ и позволяет менять место растаривания ВВ (снаряжение зарядных машин). Недостатками передвижных растаривающих установок являются низкая производительность снаряжания зарядных машин и повышенная запыленность в рабочей зоне опе­ратора на верхней площади растаривания.

Пункты для приготовления горячего насыщенного раствора селитр. В этих пунктах готовится раствор аммиачной, натриевой и кальциевой селитр со стабилизирующими добавками (полиакриламид, карбоксилметилцеллюлоза, ПАВ и т. д.). Раствор

Рис. 13.12. Схема самоходной погрузочно-растаривающей установки МПР-30

применяется в качестве компонента для приготовления на взры­ваемом блоке горячельющихся ВВ путем добавления в него гранулированного или чешуйчатого тротила. При этом образуется суспензия из раствора и частиц тротила, имеющих различную плотность. Для стабилизации заряда в него вводят в процессе заряжания добавки и поперечные сшивки, ускоряющие его за­гущение.

Взрывчатые смеси на основе горячего раствора аммиачной селитры типа ГЛТ-20 освоены на Лебединском ГОКе по разра­боткам Ленинградского горного института с участием НИИКМА. В 1975 г. на этом ГОКе был построен пункт для приготовления горячего раствора селитры. В состав пункта входят склад селитры, установка для приготовления горячего раствора окислителя, машина УДС для доставки готового раствора окислителя и смесительно-зарядный агрегат СЗА-1. На этом пункте производятся растаривание с измельчением слежавшейся селитры, приготовле­ние горячего ее раствора со стабилизирующими добавками, за­грузка готового раствора в доставочную машину УДС.

С 1986 г. комбинат использует для приготовления водосодержащих ВВ зарядные машины «Акватол-1У» и «Акватол-3», кото­рые снаряжают на пункте горячим раствором селитр и достав­ляют его на заряжаемый блок. Сюда же в зарядной машине МЗ-ЗА доставляют тротил (гранулированный или чешуйчатый), откуда он по зарядному рукаву через объемные дозаторы подается в ем­кость машины «Акватол-1У», из которой после перемешивания в течение 15 мин поступает по зарядному шлангу в скважину под столб воды.

Изготовленная на комплексе взрывчатая смесь ГЛТ-20 имеет плотность заряжания в 1,4-1,6 раза выше по сравнению с гра­нулированными ВВ.

Применение взрывчатой смеси ГЛТ-20 обеспечивает снижение себестоимости 1 т ВВ в 1,7-2 раза и дает возможность уменьшить объем бурения скважин на 15-20 % за счет повышения объемной концентрации энергии заряда ВВ. ГЛТ-20 целесообразно при­менять в первом ряду скважин с увеличенной величиной линии сопротивления по подошве, взрывать блоки с расширенной сеткой скважин.

Под снаряжением боеприпасов понимают ряд последовательных операций по наполнению корпусов снарядов, мин, боевых частей реактивных снарядов и ракет, авиабомб и т.д. взрывчатыми веществами. Взрывчатые вещества производятся в порошкообразном виде. В боеприпасах ВВ представляют собой монолит и называются разрывным зарядом. Разрывной заряд изготовляется или непосредственно в камере боеприпаса, или изготовляется заранее, а затем в виде готовых шашек укладывается в камеру боеприпаса.

Наполнение корпусов боеприпасов взрывчатым веществом может производиться различными способами: заливкой , шнекованием , прессованием . Наполнение по первому способу производится заливкой расплавленного жидкого ВВ в корпус снаряда в один или несколько приемов в зависимости от размеров боеприпаса и конфигурации камеры. Чем больше калибр снаряда и отношение диаметра горловины камеры к ее наибольшему диаметру, тем в большее число приемов производится заливка. Качественный литой разрывной заряд должен иметь однородную мелкокристаллическую структуру (без пузырьков, раковин и трещин) и высокую плотность. Для получения однородной мелкокристаллической структуры разрывного заряда заливку ведут при наивыгоднейшем соотношении жидкой и кристаллической фаз в расплавленном ВВ. Последнее достигается так называемой шимозацией ВВ, т.е. энергичным перемешиванием расплавленного ВВ перед заливкой.

Перемешивание ускоряет охлаждение ВВ и начало процесса его кристаллизации, способствует образованию большого числа центров кристаллизации и, следовательно, препятствует появлению крупных кристаллов.

Мелкокристаллическая структура разрывного заряда обеспечивает ему высокую плотность, прочность и безопасность при выстреле, что очень важно, так как такой разрывной заряд может выдержать без разрушения напряжения, развивающиеся в нем под действием инерционных сил при выстреле.

Заряды крупнокристаллической структуры обладают малой прочностью и при выстреле могут разрушаться, что приводит к преждевременным разрывам снарядов в канале ствола орудия или на траектории вследствие воспламенения ВВ от трения при разрушении зарядов.

Чтобы предотвратить образование пузырей и раковин в заряде, жидкое ВВ в корпусе снаряда периодически перемешивают латунным прутом, что способствует удалению пузырьков воздуха.

Трещины в разрывном заряде не допускаются, так как при выстреле в местах расположения трещин возникает значительное трение между частицами заряда, способное вызвать воспламенение ВВ и преждевременный разрыв снаряда в канале ствола при выстреле.
Чтобы не было трещин в заряде, корпуса снарядов перед заливкой предварительно подогревают до температуры помещения, в котором производят заливку, и медленно охлаждают разрывной заряд. Различают кусковую, вибрационную и вакуумную заливки.

Сущность кусковой заливки заключается во введении в камеру боеприпаса вместе с жидким ВВ заранее приготовленных кусков твердого литого ВВ. Заливка кусковым способом обычно ведется следующим образом: вначале в камеру боеприпаса примерно на 1/3 ее объема заливают жидкий тротил, в который затем вводят, утрамбовывая деревянной палочкой, куски ВВ до тех пор, пока они не распределятся по всему объему жидкого ВВ. Этот процесс повторяется до полного заполнения объема камеры.

Кусковой способ ускоряет процесс наполнения корпусов боеприпасов примерно в 2–3 раза по сравнению с обычным способом заливки одним лишь жидким ВВ. Но вследствие неодинаковой плотности получаемой при этом отливки, а также из-за плохого спая кусков с застывшим ВВ данный способ используется лишь для наполнения взрыв-чатым веществом авиабомб, мин, ручных гранат и других видов боеприпасов, разрывных зарядов, которые не подвергаются значительным сотрясениям.

Вибрационная заливка является более совершенным методом сна-ряжения боеприпасов. Вибрационная заливка заключается в использовании явления вибрации для более качественного распределения и уплотнения кусков ВВ в камере боеприпаса и ускорении процесса наполнения камеры. Вибрации с определенной частотой подвергается корпус боеприпаса в процессе его наполнения с помощью специального устройства.

Вакуумная заливка преследует ту же цель, что и вибрационная. Для повышения качества заполнения корпуса и производительности труда перед заполнением ВВ камера боеприпаса вакуумируется.

Снаряжение шнекованием состоит в наполнении камер боеприпасов порошкообразным ВВ при помощи шнек-аппарата. Данный способ является высокопроизводительным и механизированным. Он применяется в основном для наполнения снарядов наземной артиллерии, а также авиабомб и мин. Шнекование не применяется для наполнения боеприпасов гексогеном и тринитротолуолом как в чистом виде, так и во флегматизированном, и в виде смесей их с другими веществами вследствие высокой чувствительности их к трению.

Прессование заключается в изготовлении шашек взрывчатого вещества в специальных матрицах (реже непосредственно в камере боеприпаса) путем одновременного уплотнения всей массы взрывчатого вещества пуансоном. Таким образом, разрывной заряд или его элементы изготовляются заранее, и наполнение камеры боеприпаса заключается во вставке готового разрывного заряда.

Метод образования заряда с изготовлением его непосредственно в камере боеприпаса называется нераздельным. Метод изготовления заряда вне камеры боеприпаса с последующим закреплением его в камере называется раздельным. Раздельный метод в зависимости от способа сборки и закрепления заряда в камере имеет две разновидности: раздельно-шашечный и раздельно-футлярный.

Раздельно-шашечный способ наполнения снарядов широко применяется у нас с начала Великой Отечественной войны и особенно со времени внедрения в валовое производство взрывчатого вещества, которым не могут наполнять корпуса боеприпасов ни способом заливки, ни способом шнекования. Раздельно-шашечный способ наполнения состоит во вставке заранее изготовленных прессованием или отливкой шашек ВВ в камеру корпуса снаряда на том или ином закрепителе (обычно на сплаве парафин–церезин 1:1). При большом числе шашек их склеивают шеллачно-канифольным лаком в сборки по несколько штук в каждой.

Последовательность выполнения операций наполнения снарядов раздельно-шашечным способом следующая. В камеру корпуса вводится определенное количество расплавленного сплава парафин–церезин и вставляется первая шашка (или сборка шашек); при этом количество сплава подбирается так, чтобы он полностью заполнял зазоры между поверхностями шашки (сборки шашек) и камеры. Таким же образом вставляются в камеру остальные шашки или сборки шашек. Затем на заряд кладутся картонные прокладки, и ввинчивается дно. Картонные прокладки заполняют зазор между зарядом и дном; они служат для поджатия заряда в корпусе снаряда, чтобы не допустить перемещения его при выстреле.

Раздельно-футлярный способ наполнения применяется главным образом для снаряжения бронебойных снарядов. Он отличается от раздельно-шашечного способа тем, что прессованные шашки ВВ вставляются вначале в футляр, а затем уже снаряженный футляр вставляется в камеру корпуса снаряда, где закрепляется на сплаве парафина с церезином. Количество сплава подбирается с таким расчетом, чтобы он полностью заполнял зазоры между шашками ВВ и внутренней поверхностью футляра, а также между поверхностью снаряженного футляра и камеры снаряда. Материалами для изготовления футляров могут быть алюминий, картон, пластмасса и др.

При обработке разрывного заряда предусматривается окончательная отделка заряда. При окончательной отделке снарядов наружная поверхность снарядов окрашивается, и на нее наносится отличительная маркировка. Окраска наружной поверхности снарядов приме-няется как антикоррозийное покрытие, а также служит средством распознавания снарядов по их боевому назначению и снаряжению. Готовые снаряды укупориваются.

Изобретение относится к способу изготовления промышленных взрывчатых веществ (ПВВ) на основе порошкообразных, гранулированных и жидких компонентов и может найти применение в горнодобывающей промышленности при изготовлении ВВ. Установка состоит из трех узлов: дозирования, смешивания и упаковки готового продукта. Узел дозирования включает емкости-дозаторы для твердых и жидких компонентов. Узел смешивания включает смеситель барабанного типа циклического действия. Бункер смесителя представляет собой вращающийся барабан, состоящий из верхнего и нижнего усеченных конусов, соединенных между собой цилиндром. На внутренней поверхности верхнего конуса и цилиндра установлены по три пластины с зазором 8-15 мм от корпуса, равноудаленные друг от друга, под углом 30-45 o к оси барабана. Пластины верхнего конуса и цилиндра смещены относительно друг друга на 60 o . Узел упаковки готового продукта включает приемный разгрузочный бункер, соединенные с ним мерные емкости, калибровочные вставки, оснащенные шиберами. Установка позволяет изготавливать многокомпонентные ПВВ, осуществлять любой порядок ввода компонентов, проста в эксплуатации. 1 з. п. ф-лы, 2 ил.

Изобретение относится к области производства промышленных взрывчатых веществ (ПВВ) на основе порошкообразных, гранулированных и жидких компонентов и может найти применение в горнодобывающей промышленности для изготовления ПВВ как на местах ведения взрывных работ, так и в условиях изготовления ПВВ на заводах-изготовителях взрывчатых веществ (ВВ). Технология приготовления гранулированных ПВВ весьма проста - она сводится к механическому перемешиванию твердой и жидкой фаз. Технологическая схема изготовления таких ПВВ определяется видом оборудования, применяемого для подготовки, дозирования, смешения компонентов и упаковки готового продукта. Известно производство гранулированных двухкомпонентных ВВ таких, как игданит на основе гранулированной аммиачной селитры и жидкого нефтепродукта на установках УИ-1(2), ИСИ-11 циклического и непрерывного действия, в смесительно-зарядных машинах, например, МЗС-1М, где смешение аммиачной селитры с дизельным топливом осуществляется в шнеко-смесительной камере. Недостатками названных установок является невозможность изготовления многокомпонентных систем. Кроме того, такие смесители не могут обеспечить безопасность изготовления промышленных ВВ, содержащих в своем составе вещества, обладающие повышенной чувствительностью к механическим воздействиям (пороха, ВВ). Известен способ получения взрывчатых смесей и устройство для его осуществления (пат. России N 2111941), которое включает емкости для твердых и жидких компонентов, смеситель с рассеивающей поверхностью и устройство подачи жидкой фазы. В поток твердых частиц на верхнем уровне вводится только дизельное топливо, а на нижнем - только водомасляная эмульсия. Известен способ диффузионно-поточного изготовления простейших взрывчатых смесей (пат. России N 2105951), заключающийся в непрерывной подаче исходных компонентов из бункера через калибровочные выпускные отверстия на поверхность движущегося ленточного транспортера в форме слоевого потока. При этом происходит диффузионное проникновение частиц верхнего слоя в нижний и образуется первичная смесь заданного состава. При свободном падении слоевого потока с транспортера в поток вводится жидкая фаза, превращая его в простейшую взрывчатую смесь с заданным стехиометрическим соотношением компонентов. Недостатками данных установок является низкая степень перемешивания, особенно при изготовлении трех и более компонентных взрывчатых смесей, содержащих в качестве твердой фазы ингредиенты разной плотности и степени измельчения. Кроме того, нельзя изменить порядок ввода жидкой и твердой фаз: жидкая фаза вводится или одновременно с твердой фазой или после предварительного смешения ингредиентов твердой фазы. Известны установки для изготовления гранулированных ВВ таких, как игданит, в которых смешение компонентов осуществляется в смесителях барабанного типа - установка "Миксэнол" фирмы "Нитро Нобель" (Швеция) ("Механизация взрывных работ"/ Под редакцией А. М. Бейсабаева и др. М. , Недра, 1992). Конический барабан смесителя названной установки выполнен из нержавеющей стали и имеет три радиальных ряда лопаток, смонтированных на корпусе барабана. Барабан смонтирован на станине, оснащенной специальным устройством для регулирования частоты вращения, и может быть закреплен под определенным углом для обеспечения загрузки и выгрузки. Смеситель приводится в действие пневмодвигателем, или гидравлическим, или электрическим двигателем. Названная установка принята за прототип. Недостатком установки "Миксэнол" является сложность и неудобство чистки и ремонта его из-за конструктивных особенностей смесителя. Технической задачей изобретения является создание установки для изготовления многокомпонентных ПВВ с улучшенными технико-экономическими показателями за счет интенсификации процесса смешения, оптимизации конструкции перемешивающего органа, улучшения санитарно-гигиенических условий работы обслуживающего персонала, расширения технологических схем производства ПВВ. Необходимо учитывать, что в настоящее время для производства ПВВ используются порошкообразные, гранулированные, чешуйчатые и кристаллические компоненты, значительно отличающиеся по удельному весу (1,5-7,5 г/см 3), например торф и металлическое горючее; размеру частиц (0,004-4 мм), например микросферы перлитового песка, алюминиевая пудра и гранулотол, а массовое соотношение компонентов в составе ПВВ весьма различно. Поставленная задача решена созданием установки для изготовления ПВВ, в которой дополнительно установлены емкости-дозаторы для ввода трех и более сыпучих и жидких компонентов; барабан-смеситель циклического действия выполнен в виде двух усеченных конусов, соединенных цилиндром, и снабжен по внутренней поверхности верхнего конуса и цилиндра тремя пластинами, установленными под углом 30-45 o к оси барабана-смесителя, равноотстоящими друг от друга (через 120 o) с зазором 8-15 мм от его корпуса, пластины верхнего конуса и цилиндра смещены относительно друг друга на 60 o , а узел разгрузки выполнен в виде приемного разгрузочного бункера, соединенных с ним мерных емкостей и сменных калибровочных вставок, оснащенных шиберами, что обеспечивает возможность формировать навеску массы ВВ единичной транспортной упаковки с высокой точностью с учетом насыпной плотности ВВ. На фиг. 1 изображена установка для изготовления промышленных взрывчатых веществ, включающая узел дозирования компонентов А, узел смешения Б, узел разгрузки продукта В. Узел дозирования А включает емкости-дозаторы для твердых и жидких компонентов ПВВ. Узел смешения Б включает: 2 - барабан-смеситель, 3 - траверсу, 4 - редуктор, 5 - электродвигатель, 6 - раму, 7 - механизм опрокидывания, 8 - выносной пульт управления, 9 - кнопочный пульт управления. Для фиксации барабана-смесителя предусмотрено запорное устройство. Аппаратура управления электродвигателем барабана-смесителя размещена в выносном электрошкафу с настенным креплением. Предусмотрено также дублирование управления барабана-смесителя непосредственно с рабочего места с помощью кнопочного поста типа КУ-92 во взрывозащищенном исполнении. Узел разгрузки продукта В включает: 10 - приемный разгрузочный бункер, 11 - мерную емкость, 12 - сменную калибровочную вставку, 13 - шибер (верхний ии нижний), 14 - оправку для закрепления упаковки, 15 - единичную транспортную упаковку. На фиг. 2 представлена предлагаемая конструкция барабана-смесителя. Барабан-смеситель выполнен в виде верхнего 16 и нижнего 17 усеченных конусов, соединенных между собой цилиндром 18. На внутренней поверхности верхнего конуса и цилиндра установлены по три пластины 19 с зазором 8-15 мм от их корпусов, равноотстоящие друг от друга (через 120 o) под углом 30-45 o к оси барабана-смесителя. Пластины верхнего конуса и цилиндра смещены относительно друг друга на 60 o . Пластины крепятся к поверхности барабана-смесителя болтами или сваркой. Размер пластин, установленных в верхнем конусе, 80х400х2 мм, в цилиндре - 80х150х2 мм. Барабан-смеситель и его внутренние детали выполнены из нержавеющей стали, например, хромоникелевой. Оптимальное расположение пластин авторами установлено экспериментально. Угол наклона пластин, равный 30-45 o к оси барабана-смесителя, обеспечивает максимальную интенсивность перемешивания компонентов. При этом наибольшая равномерность распределения компонентов в готовом ВВ получена при условии смещения пластин 19 верхнего конуса 16 и цилиндра 18 относительно друг друга на 60 o (см. фиг. 2). Установка пластин от корпуса с зазором 8-15 мм позволяет осуществить равномерность смешения компонентов по всему объему барабана смесителя и исключает налипание компонентов на стенки корпуса и пластин. Установка работает следующим образом (фиг. 1). С помощью механизма опрокидывания 7 барабан-смеситель 2 устанавливают на требуемый угол, например 30 o , и в соответствии с рецептурой ПВВ и регламентом техпроцесса осуществляют загрузку компонентов из емкостей-дозаторов 1, после чего с выносного пульта 8 или кнопочного поста управления 9 включают привод вращения барабана-смесителя 5 через редуктор 4. Частота вращения барабана-смесителя 20-40 мин -1 . Время смешения 5-15 мин в зависимости от компонентного состава и порядка ввода компонентов. Угол наклона барабана-смесителя изменяется от 0 до 125 o . Выгрузку готовой продукции осуществляют путем опрокидывания барабана-смесителя в крайнее нижнее положение при включенном приводе вращения до полного его освобождения в приемный разгрузочный бункер 10. Из приемного разгрузочного бункера масса ВВ при открытом верхнем шибере 13 поступает в мерную емкость 11 и калибровочную вставку 12. Таким образом формируется масса ВВ единичной транспортной упаковки. Мерная емкость 11 рассчитана на единичную транспортную упаковку, например 40 кг, при максимально возможной насыпной плотности ВВ. При изготовлении ПВВ другой (меньшей) насыпной плотности навеска (40 кг) корректируется калибровочной вставкой 12, являющейся сменной. Сформированная таким способом в мерной емкости и калибровочной вставке навеска через нижний шибер 13 поступает в транспортную тару, например в многослойный бумажный мешок с полиэтиленовым мешком-вкладышем 15, закрепленным на держателе 14. При вращении барабан-смесителя с установленными в нем пластинами смешиваемый материал подвергается перемещению по сложной траектории за счет воздействия на него сил трения по боковой поверхности барабана-смесителя и пластин и сил гравитации, что приводит в конечном счете к интенсивному перемешиванию. Предлагаемая конструкция барабана-смесителя предотвращает образование застойных зон, расслаивание компонентов и позволяет получать высокое качество смешения. Кроме того, такая конструкция барабана-смесителя облегчает и упрощает чистку оборудования, т. к. не образуется налипание и скопление компонентов смеси на внутренних элементах барабана-смесителя. Установка дополнительных емкостей-дозаторов позволяет изготавливать ПВВ, содержащие более трех компонентов, и осуществлять любой порядок ввода компонентов при изготовлении многокомпонентных взрывчатых смесей, например ввод аммиачной селитры, омасливание ее дизельным топливом при перемешивании, опудривание мелкодисперсным компонентом (микросферами, торфом и др.) с последующим смешением с другими гранулированными компонентами (гранулотолом, чешуйчатым тротилом и др.). Конструкции разгрузочного бункера с мерной и калибровочной емкостями позволяют пр изготовлении ПВВ с различной насыпной плотностью формировать единичную транспортную упаковку с высокой точностью. Предлагаемая установка по изготовлению ПВВ характеризуется высокой безопасностью, надежностью и простотой конструкции и может быть смонтирована как в заводских условиях, так и на специализированных пунктах изготовления ВВ предприятий, ведущих взрывные работы. Установка обеспечивает производительность по готовому продукту 500-1000 кг/ч. С использованием предлагаемой установки изготовлено и поставлено потребителю 100 т взрывчатого вещества на основе гранулированной аммиачной селитры, гранулированного тротила и дизельного топлива; 200 т взрывчатого вещества на основе аммиачной селитры, торфа и дизельного топлива. При изготовлении указанных взрывчатых веществ по согласованию с потребителем использовали аммиачную селитру различной плотности, в том числе гранулированную плотную с насыпной плотностью 0,96 г/см 3 , пористую гранулированную селитру с насыпной плотностью 0,76 м/см 3 и их смесь в различном соотношении. При этом качество изготовленных ВВ, а также масса транспортной упаковки соответствовали требованиям нормативно-технической документации.

Формула изобретения

1. Установка для изготовления промышленных взрывчатых веществ, включающая емкости-дозаторы для ввода аммиачной селитры и дизельного топлива, барабан-смеситель циклического действия, узел разгрузки, отличающаяся тем, что барабан-смеситель выполнен в виде двух усеченных конусов, соединенных цилиндром, и снабжен по внутренним поверхностям верхнего конуса и цилиндра равноотстоящими друг от друга тремя прямоугольными пластинами, установленными под углом 30-45 o к оси барабана-смесителя с зазором 8-15 мм от его корпуса, причем пластины верхнего конуса и цилиндра смещены относительно друг друга на 60 o , а узел разгрузки выполнен в виде приемного разгрузочного бункера, соединенных с ним мерных емкостей и сменных калибровочных вставок, оснащенных шиберами. 2. Установка по п. 1, отличающаяся тем, что она дополнительно содержит емкости-дозаторы для ввода сыпучих и жидких компонентов.